簡易檢索 / 詳目顯示

研究生: 李佳欣
Lee, Chia-Hsin
論文名稱: 一個使用數位碼錯誤校正之2.5-bit/cycle十位元每秒取樣一億六千萬次的逐漸趨近式類比數位轉換器
A 2.5-bit/cycle 10-bit 160-MS/s SAR ADC with Digital Code Error Correction
指導教授: 張順志
Chang, Soon-Jyh
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 英文
論文頁數: 110
中文關鍵詞: 2.5-bit/cycle輸入位準平移逐漸趨近式類比數位轉換器
外文關鍵詞: 2.5-bit/cycle, input level shifting, successive approximation, SAR, analog-to-digital converter, ADC
相關次數: 點閱:88下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文提出一個單通道2.5-bit/cycle十位元每秒取樣一億六千萬次的逐漸趨近式類比數位轉換器。與過去的2.5-bit/cycle逐漸趨近式類比數位轉換器相比,本研究提出的輸入位準平移技巧可減少一組副數位類比轉換器的使用,並降低另外兩組副數位類比轉換器對解析度的要求;此外,數位碼錯誤校正透過簡潔的數位電路方式,實現了更大的錯誤量容忍範圍。
    本設計以台積電90奈米CMOS標準1P9M製程實作晶片,核心電路面積佔262.8μm × 420 μm。量測結果顯示,在1伏特電源供電及每秒取樣一億六千萬次的操作速度下,訊號雜訊比之最大值為53.23分貝,換算之有效位元數為8.55位元,消耗功率為1.97 mW,每次資料所消耗的能量為32.9 fJ。

    This thesis presents a single-channel 2.5-bit/cycle 10-bit 160-MS/s successive-approximation register (SAR) analog-to-digital converter (ADC). In comparison with the conventional 2.5-bit/cycle SAR ADC, the proposed input level shifting technique saves one sub-digital-to-analog converter (sub-DAC) and relaxes the requirement on resolution for the other sub-DACs. In addition, the proposed digital code error correction provides a wider error tolerance range by a compact digital design. The proposed ADC was fabricated in TSMC 90-nm CMOS standard 1P9M process, and occupies 262.8 μm × 420 μm active area. At 1-V supply and 160-MS/s sampling rate, the measured peak signal-to-noise and distortion ratio (SNDR) is 53.23 dB. The resultant effective number of bits is 8.55 bits with power consumption of 1.97 mW. The figure-of-merit (FoM) is 32.9 fJ/conversion-step.

    Abstract II List of Figures VIII List of Tables XII Chapter 1 Introduction 1 1.1 BACKGROUND AND MOTIVATION 1 1.2 ORGANIZATION 4 Chapter 2 Fundamentals of Analog-to-Digital Converters 5 2.1 THE BASICS OF ADCS 5 2.1.1 Quantization Error 6 2.1.2 Resolution 9 2.1.3 Accuracy 9 2.2 STATIC SPECIFICATIONS 10 2.2.1 Offset Error 10 2.2.2 Gain Error 10 2.2.3 Nonlinearity 12 2.3 DYNAMIC SPECIFICATIONS 15 2.3.1 Signal-to-Noise Ratio 15 2.3.2 Signal-to-Noise and Distortion Ratio 16 2.3.3 Effective Number of Bits 16 2.3.4 Spurious Free Dynamic Range 16 2.3.5 Total Harmonic Distortion 17 2.4 TYPES OF NYQUIST RATE ADCS 18 2.4.1 Flash ADC 18 2.4.2 Pipelined ADC 20 2.4.3 Successive-Approximation Register ADC 22 Chapter 3 Introduction of SAR ADCs 23 3.1 BASICS OF SAR ADCS 23 3.1.1 The Concepts of SAR Scheme 24 3.1.2 Circuit Operation of the SAR Architecture 26 3.2 DESIGN TECHNIQUES OF SAR ADCS 29 3.2.1 Capacitor Switching Methods 29 3.2.2 Multi-bit Design techniques 37 3.3 REDUNDANCY AND ERROR TOLERANCE 43 3.3.1 Binary-Scaled Error Compensation 43 3.3.2 Half-bit Redundancy in Multi-bit Structure 46 Chapter 4 A 10-bit 160-MS/s SAR ADC 52 4.1 INTRODUCTION 52 4.2 ARCHITECTURE CONSIDERATION 54 4.2.1 The 2.5-bit/cycle Structure 55 4.2.2 Circuit Operation Procedure 58 4.3 PROPOSED TECHNIQUES 59 4.3.1 Input Level Shifting Technique 59 4.3.2 Digital Code Error Correction 64 4.4 ARCHITECTURE OF PROPOSED SAR ADC 75 4.5 CIRCUIT IMPLEMENTATION 77 4.5.1 Bootstrapped Switch 77 4.5.2 Dynamic Comparator 79 4.5.3 Digital Control Logic Circuits 81 4.5.4 Capacitor DAC Array 86   Chapter 5 Simulation and Measurement Results 88 5.1 LAYOUT AND CHIP FLOOR PLAN 88 5.2 SIMULATION RESULTS 91 5.3 DIE MICROGRAPH AND MEASUREMENT SETUP 96 5.4 MEASUREMENT RESULTS 98 Chapter 6 Conclusions and Future Works 103 Bibliography 105

    [1] B. Murmann, “ADC Performance Survey 1997-2015,” [Online]. Available: http://web.stanford.edu/~murmann/adcsurvey.html.
    [2] D. Robertson, “The past, present, and future of data converters and mixed signal ICs: a universal model,” in IEEE Symp. VLSI Circuits Dig. Tech. Papers, 2006, pp. 1–4.
    [3] D. W. Cline, and P. R. Gray, “A power optimized 13-b 5 Msamples/s pipelined analog-to-digital converter in 1.2 μm CMOS,” IEEE J. Solid-State Circuits, vol. 31, no. 3, pp. 294–303, Mar. 1996.
    [4] A. V. Oppenheim, A. S. Willsky, and S. H. Nawab, Signals and Systems, 2nd Ed. Upper Saddle River, NJ, USA: Prentice-Hall, 1996.
    [5] B. Razavi, Principles of Data Conversion System Design, New York, USA: Wiley-IEEE Press, 1995.
    [6] R. V. D. Plassche, CMOS Integrated Analog-to-Digital and Digital-to-Analog Converters, 2nd Ed. Boston, USA: Kluwer Academic Publishers, 2003.
    106
    [7] N.-Y. Wang, “A 10-bit 110-MS/s SAR ADC with 2.5-bit predictive capacitor switching procedure,” M.S. thesis, Dept. Elect. Eng., National Cheng Kung Univ., Tainan, Taiwan, 2011.
    [8] T. C. Carusone, D. A. Johns, and K. W. Martin, Analog Integrated Circuit Design, 2nd Ed. Hoboken, NJ, USA: John Wiley & Sons, 2012.
    [9] P. E. Allen, and D. R. Holberg, CMOS Analog Circuit Design, 2nd Ed. New York, USA: Oxford University Press, 2002.
    [10]M. Gustavsson, J. J. Wikner, and N. N. Tan, CMOS Data Converters for Communications, New York, USA: Kluwer Academic Publishers, 2002.
    [11] Data Conversion Handbook, Analog Devices, Inc., Norwood, MA, USA, 2004.
    [12] Y.-T. Huang, “A 6-bit 220-MS/s successive-approximation analog-to-digital converter,” M.S. thesis, Dept. Elect. Eng., National Cheng Kung Univ., Tainan, Taiwan, 2008.
    [13] B. Goll, and H. Zimmermann, Comparators in Nanometer CMOS Technology, Berlin, Germany: Springer, 2015.
    [14] Y. Chiu, B. Nikolic, and P. R. Gray, “Scaling of analog-to-digital converters into ultra-deep-submicron CMOS,” in Proc. IEEE CICC, 2005, pp. 375–382.
    [15] J. K. Fiorenza, T. Sepke, P. Holloway, C.G. Sodini, and H.-S. Lee, “Comparator-based switched-capacitor circuits for scaled CMOS technologies,” IEEE J. Solid-State Circuits, vol. 41, no. 12, pp. 2658–2668, Dec. 2006.
    [16] B. Hershberg, S. Weaver, K. Sobue, S. Takeuchi, K. Hamashita, and U.-K. Moon, “Ring amplifiers for switched capacitor circuits,” IEEE J. Solid-State Circuits, vol. 47, no. 12, pp. 2928–2942, Dec. 2012.
    [17] Y. Lim, and M. P. Flynn, “A 100MS/s 10.5b 2.46mW comparator-less pipeline ADC using self-biased ring amplifiers,” in IEEE ISSCC Dig. Tech. Papers, 2014, pp. 202–203.
    107
    [18]M. V. Elzakker, E. V. Tuijl, P. Geraedts, D. Schinkel, E. A. M. Klumperink, and B. Nauta, “A 10-bit charge-redistribution ADC consuming 1.9 μW at 1 MS/s,” IEEE J. Solid-State Circuits, vol. 45, no. 5, pp. 1007–1015, May 2010.
    [19] C.-Y. Liou, and C.-C. Hsieh, “A 2.4-to-5.2fJ/conversion-step 10b 0.5-to-4MS/s SAR ADC with charge-averaging switching DAC in 90nm CMOS,” in IEEE ISSCC Dig. Tech. Papers, 2013, pp. 280–281.
    [20] H.-Y. Tai, Y.-S. Hu, H.-W. Chen, and H.-S. Chen, “A 0.85fJ/conversion-step 10b 200kS/s subranging SAR ADC in 40nm CMOS,” in IEEE ISSCC Dig. Tech. Papers, 2014, pp. 196–197.
    [21]M. Hesener, T. Eichler, A. Hanneberg, D. Herbison, F. Kuttner, H. Wenske, “A 14b 40MS/s redundant SAR ADC with 480MHz clock in 0.13μm CMOS,” in IEEE ISSCC Dig. Tech. Papers, 2007, pp. 248–249.
    [22] Y. Zhu, C.-H. Chan, U-F. Chio, S.-W. Sin, S.-P. U, R. P. Martins, and F. Maloberti, “A 10-bit 100-MS/s reference-free SAR ADC in 90 nm CMOS,” IEEE J. Solid-State Circuits, vol. 45, no. 6, pp. 1111–1121, Jun. 2010.
    [23] H. Wei, C.-H. Chan, U-F. Chio, S.-W. Sin, S.-P. U, R. P. Martins, and F. Maloberti, “An 8-b 400-MS/s 2-b-per-cycle SAR ADC with resistive DAC,” IEEE J. Solid-State Circuits, vol. 47, no. 11, pp. 2763–2772, Nov. 2012.
    [24] C.-C. Liu, “A 10-bit 320-MS/s low-cost SAR ADC for IEEE 802.11ac applications in 20-nm CMOS,” in IEEE A-SSCC, 2014, pp. 77–80.
    [25] T. Morie, T. Miki, K. Matsukawa, Y. Bando, T. Okumoto, K. Obata, and S. Dosho, “A 71dB-SNDR 50MS/s 4.2mW CMOS SAR ADC by SNR enhancement techniques utilizing noise,” in IEEE ISSCC Dig. Tech. Papers, 2013, pp. 272–273.
    [26] R. Kapusta, J. Shen, S. Decker, H. Li, and E. Ibaragi, “A 14b 80MS/s SAR ADC with 73.6dB SNDR in 65nm CMOS,” IEEE ISSCC Dig. Tech. Papers, 2013, pp. 472–473.
    108
    [27] P. Harpe, E. Cantatore, and A. V. Roermund, “An oversampled 12/14b SAR ADC with noise reduction and linearity enhancements achieving up to 79.1dB SNDR,” in IEEE ISSCC Dig. Tech. Papers, 2014, pp. 194–195.
    [28] J. L. McCreary, and P. R. Gray, “All-MOS charge redistribution analog-to-digital conversion techniques—Part I,” IEEE J. Solid-State Circuits, vol. SC-10, no. 6, pp. 371–379, Dec. 1975.
    [29] C.-C. Liu, S.-J. Chang, G.-Y. Huang, and Y.-Z. Lin, “A 10-bit 50-MS/s SAR ADC with a monotonic capacitor switching procedure,” IEEE J. Solid-State Circuits, vol. 45, no. 4, pp. 731–740, Dec. 2010.
    [30] B. P. Ginsburg, and A. P. Chandrakasan, “An energy-efficient charge recycling approach for a SAR converter with capacitive DAC,” in Proc. IEEE ISCAS, 2005, pp. 184–187.
    [31] Y.-K. Chang, C.-S. Wang, and C.-K. Wang, “A 8-bit 500-KS/s low power SAR ADC for bio-medical applications,” in IEEE A-SSCC, 2007, pp. 228–231.
    [32] C.-C. Liu, S.-J. Chang, G.-Y. Huang, Y.-Z. Lin, and C.-M. Huang, “A 1V 11fJ/conversion-step 10bit 10MS/s asynchronous SAR ADC in 0.18μm CMOS,” in IEEE Symp. VLSI Circuits Dig. Tech. Papers, 2010, pp. 241–242.
    [33] C.-H. Kuo, “A 10-bit 120-MS/s SAR ADC with compact architecture and noise suppression technique,” M.S. thesis, Dept. Elect. Eng., National Cheng Kung Univ., Tainan, Taiwan, 2014.
    [34] G.-Y. Huang, S.-J. Chang, C.-C. Liu, and Y.-Z. Lin, “A 1-μW 10-bit 200-kS/s SAR ADC with a bypass window for biomedical applications,” IEEE J. Solid-State Circuits, vol. 47, no. 11, pp. 2783–2795, Nov. 2012.
    [35] C.-C. Liu, S.-J. Chang, G.-Y. Huang, Y.-Z. Lin, C.-M. Huang, C.-H. Huang, L. Bu, and C.-C. Tsai, “A 10b 100MS/s 1.13mW SAR ADC with binary-scaled error compensation,” in IEEE ISSCC Dig. Tech. Papers, 2010, pp. 386–387.
    109
    [36] J. Guerber, M. Gande, and U.-K. Moon, “The analysis and application of redundant multistage ADC resolution improvements through PDF residue shaping,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 59, no. 8, pp. 1733–1742, Aug. 2012.
    [37] S.-W. M. Chen, and R. W. Brodersen, “A 6-bit 600-MS/s 5.3-mW asynchronous ADC in 0.13-μm CMOS,” IEEE J. Solid-State Circuits, vol. 41, no. 12, pp. 2669–2680, Dec. 2006.
    [38] A. S. Sedra, and K. C. Smith, Microelectronic Circuits, 6th Ed. New York, USA: Oxford University Press, 2011.
    [39] B. J. Sheu, and C. Hu, “Switched-induced error voltage on a switched capacitor,” IEEE J. Solid-State Circuits, vol. SC-19, no. 4, pp. 519–525, Aug. 1984.
    [40]M. Dessouky, and A. Kaiser, “Input switch configuration suitable for rail-to-rail operation of switched opamp circuits,” Electron. Lett., vol. 35, pp. 8–10, Jan. 1999.
    [41] G. Huang, and P. Lin, “A fast bootstrapped switch for high-speed high-resolution A/D converter,” in IEEE APCCAS, 2010, pp. 382–385.
    [42]M. Miyahara, Y. Asada, D. Paik, and A. Matsuzawa, “A low-noise self-calibrating dynamic comparator for high-speed ADCs,” in IEEE A-SSCC, 2008, pp. 269–272.
    [43] H. Jeon, and Y.-B. Kim, “A CMOS low-power low-offset and high-speed fully dynamic latched comparator,” in Proc. IEEE Int. SOCC, 2010, pp. 285–288.
    [44] G.-Y. Huang, S.-J. Chang, Y.-Z. Lin, C.-C. Liu, and C.-P. Huang, “A 10b 200MS/s 0.82mW SAR ADC in 40nm CMOS,” in IEEE A-SSCC, 2013, pp. 289–292.
    [45] H. Wei, C.-H. Chan, U-F. Chio, S.-W. Sin, S.-P. U, R. Martins, and F. Maloberti, “A 0.024mm2 8b 400MS/s SAR ADC with 2b/cycle and resistive DAC in 65nm CMOS,” in IEEE ISSCC Dig. Tech. Papers, 2011, pp. 188–190.
    110
    [46] R. Vitek, E. Gordon, S. Maerkovich, and A. Beidas, “A 0.015mm2 63fJ/conversion-step 10-bit 220MS/s SAR ADC with 1.5b/step redundancy and digital metastability correction,” in Proc. IEEE CICC, 2012, pp. 1–4.
    [47] H.-K. Hong, H.-W. Kang, B. Sung, C.-H. Lee, M. Choi, H.-J. Park, and S.-T. Ryu, “An 8.6 ENOB 900MS/s time-interleaved 2b/cycle SAR ADC with a 1b/cycle reconfiguration for resolution enhancement,” in IEEE ISSCC Dig. Tech. Papers, 2013, pp. 470–471.
    [48] H.-K. Hong, W. Kim, H.-W. Kang, S.-J. Park, M. Choi, H.-J. Park, and S.-T. Ryu, “A decision-error-tolerant 45 nm CMOS 7b 1 GS/s nonbinary 2b/cycle SAR ADC,” IEEE J. Solid-State Circuits, vol. 50, no. 2, pp. 543–555, Aug. 2015.

    無法下載圖示 校內:2021-01-26公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE