簡易檢索 / 詳目顯示

研究生: 林峰正
Lin, Feng-Zheng
論文名稱: 低溫燒結陶瓷材料Ba(Co1-xMgx)2(VO4)2 (x = 0–0.8)在微波頻段之研究與應用
Study and Applications of Low-Firing Ceramics Ba(Co1-xMgx)2(VO4)2 (x = 0–0.8) at Microwave Frequency
指導教授: 黃正亮
Huang, Cheng-Liang
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 112
中文關鍵詞: 微波介電材料帶通濾波器
外文關鍵詞: LTCC, microwave dielectric ceramics, bandpass filter
相關次數: 點閱:98下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本篇論文主要分別介紹兩大部分,第一部分將介紹新開發的低損耗微波介電材料;第二部分將設計一濾波器,實作於不同基板上後探討其微波特性。
    第一部分首先介紹BaCo2(VO4)2陶瓷之微波介電特性,接著使用與Co2+ (0.745Å)離子半徑相近的Mg2+(0.72Å)對BaCo2(VO4)2中的Co2+做取代,並探討Ba(Co1-xMgx) 2(VO4)2 (x = 0–0.8)的微波介電特性與材料微結構。由實驗得知,當取代比例為x = 0.6,且燒結溫度在840oC時有良好的微波介電特性,εr ~12.3, Q×f~71,000 GHz, τf ~ –40.6 ppm/°C,是符合LTCC共燒溫度的材料。
    第二部分將設計一操作在2.4/5.2GHz的雙頻帶通濾波器。濾波器採用方形環狀諧振器為主體,為縮小面積,將其改成增強型彎曲環狀諧振器,並在其對稱面上加入一正方形電容性微擾物,以激發奇偶模態的耦合,接著使用line-to-ring coupling的方式饋入以改善插入損耗。最後,我們將電路實作在FR4、Al2O3、Ba(Co0.6 Mg 0.4)2(VO4)2基板上,並量測其頻率響應。由量測的結果可得知,利用高介電係數及低損耗的材料做為電路基板時,確實能達到提升效能和縮小面積的需求。

    In order to obtain a novel low-temperature co-fired ceramics (LTCC), the microwave dielectric properties of Ba(Co1-x Mg x)2(VO4)2 (x = 0–0.8) ceramics had been investigated. The experimental results show that BaCo2(VO4)2 has the best properties at sintering temperature 690℃ for 4 hours, with ε_r~14.1, Q×f~ 43,600 GHz, and τf ~-43 ppm/℃. Then the Co2+ from the BaCo2(VO4)2 had been substituted by Mg2+, at x = 0.6, where the ε_r~12.3, Q×f~71,000, τf ~-40.6 ppm/℃at the sintering temperature of 840℃ for 4 hours. Then, we designed and fabricated a bandpass filter on FR4、Al2O3、Ba(Co0.6 Mg 0.4) 2(VO4)2 substrates. According to the results of measurements, the performance of the filter was improved by using low-loss dielectric ceramics as the substrate.

    摘要 I Extended Abstract II 誌謝 VII 目錄 VIII 圖目錄 XII 表目錄 XVI 第一章 緒論 1 1-1 前言 1 1-2 研究目的 2 第二章 文獻回顧 3 2-1 材料的燒結 3 2-1-1 材料燒結之擴散方式 3 2-1-2 材料燒結之過程 4 2-1-3 燒結的種類(固相、液相) 5 2-2 介電共振器原理(Dielectric Resonator:DR) 6 2-3 微波介電材料之特性 10 2-3-1 介電係數(Dielectric Constant:εr) 10 2-3-2 品質因數(Quality Factor:Q) 13 2-3-3 共振頻率溫度飄移係數(τf) 16 2-4 正方晶系(Tetragonal System) 17 2-5 拉曼光譜與分子振動模態簡介 18 2-5-1 拉曼光譜(Raman Spectra) 18 2-5-2 分子的振動模態 18 2-6 低溫共燒陶瓷技術(Low Temperature Co-fired Ceramics) 19 第三章 微帶線及濾波器原理 20 3-1 濾波器原理 20 3-1-1濾波器的簡介 20 3-1-2濾波器之種類及其頻率響應 21 3-2 微帶線原理 25 3-2-1 微帶傳輸線的簡介 25 3-2-2 微帶線的傳輸模態 25 3-2-3 微帶線各項參數公式計算及考量 26 3-2-4 微帶線的不連續效應 29 3-2-5 微帶線的損失 36 3-3 微帶線諧振器種類 37 3-3-1 λ/4短路微帶線共振器 38 3-3-2 λ/2開路微帶線共振器 39 3-4 共振器間的耦合形式 41 3-4-1 電場耦合 41 3-4-2 磁場耦合 44 3-4-3 混和耦合 48 3-5 環狀諧振器[26] 51 3-5-1 環狀諧振器的頻率模態 51 3-5-2 環狀諧振器的輸入阻抗 53 3-5-3微擾(Perturbation) 55 3-5-4 Line-to-ring Coupling[32] 57 3-6雙模態 Line-to-ring Coupling環狀帶通濾波器 59 第四章 實驗程序與量測方法 63 4-1 微波介電材料的製備 63 4-1-1 粉末的製備與球磨 64 4-1-2 粉末的煆燒 64 4-1-3 加入黏劑、過篩 64 4-1-4 壓模成型、去黏劑及燒結 65 4-2 微波介電材料的量測與分析 66 4-2-1 密度測量 66 4-2-2 X-Ray分析 66 4-2-3 SEM分析 67 4-2-4 拉曼光譜分析 67 4-2-5 介電特性量測與分析 68 4-2-6 共振頻率溫度飄移係數之量測 74 4-2-7 Packing Fraction分析 75 4-3 濾波器的製作與量測 76 第五章 實驗結果與討論 78 5-1 BaCo2(VO4)2之微波介電特性 78 5-1-1 BaCo2(VO4)2之XRD相組成分析 79 5-1-2 BaCo2(VO4)2之拉曼光譜分佈 81 5-1-3 BaCo2(VO4)2之SEM分析 82 5-1-4 BaCo2(VO4)2之Packing Fraction 分析結果 84 5-1-5 BaCo2(VO4)2之相對密度分析結果 85 5-1-6 BaCo2(VO4)2之介電係數(εr)分析結果 86 5-1-7 BaCo2(VO4)2之品質因數與共振頻率乘積(Q×f)分析結果 87 5-1-8 BaCo2(VO4)2之共振頻率溫度飄移係數(τf)分析結果 88 5-2 Ba(Co1-xMgx)2(VO4)2 (x = 0–1)之微波介電特性 89 5-2-1 Ba(Co1-xMgx)2(VO4)2 (x = 0–1)之XRD相組成分析 90 5-2-2 Ba(Co1-xMgx)2(VO4)2 (x = 0–1)之拉曼光譜分佈 91 5-2-3 Ba(Co1-xMgx)2(VO4)2 (x = 0–1)之SEM分析 93 5-2-4 Ba(Co1-xMgx)2(VO4)2 (x = 0–1)之相對密度分析結果 95 5-2-5 Ba(Co1-xMgx)2(VO4)2 (x = 0–1)之介電係數(εr)分析結果 96 5-2-6 Ba(Co1-xMgx)2(VO4)2 (x = 0–1)之品質因數與共振頻率乘積(Q×f)分析結果 97 5-2-7 Ba(Co1-xMgx)2(VO4)2 (x = 0–1)之共振頻率溫度飄移係數(τf)分析結果 98 5-3 濾波器的模擬與實作 100 5-3-1 使用FR4(玻璃纖維基板)之模擬與實作結果 101 5-3-2 使用Al2O3基板之模擬與實作結果 103 5-3-3 使用Ba(Co0.4Mg0.6)2(VO4)2自製基板之模擬與實作結果 105 第六章 結論 108 參考文獻 109

    [1] W. F. Smith, 劉品均(譯), 施佑蓉(譯), 材料科學與工程, 第三版, 高立圖書, (2005).
    [2] D. M. Pozar, Microwave engineering, Addison-Wesley (1998).
    [3] D. Kajfez, “Basic principle give understanding of dielectric waveguides and resonators,” Microwave SysTFm News., 13, 152–161 (1983).
    [4] D. Kajfez, A. W. Glisson, and J. James, “Computed model field distributions for isolated dielectric resonators,” IEEE Trans. Microwave Theory Tech., 32 [12] 1609–1616 (1984).
    [5] 張盛富, 戴明鳳, 無線通信之射頻被動電路設計, 全華出版社, (1998).
    [6] 鄭景太, 淺談高頻低損失介電材料, 工業材料, 176期, (2001).
    [7] W. D. Kingery, H. K. Bowen, D. R. Uhlmann, 陳皇鈞(譯), “陶瓷材料概論,” 曉園出版社, (1988).
    [8] 余樹楨, “晶體之結構與性質,” 渤海堂文化公司, (2007).
    [9] R. Umemura, H. Ogawa, H. Ohsato, A. Kan, and A. Yokoi, “Microwave dielectric properties of low-temperature sintered Mg3(VO4)2 ceramic,” J. Eur. Ceram. Soc., 25 2865-2870 (2005).
    [10] M. R. Joung, J. S. Kim, M. E. Song, S. Nahm, J. H. Paik, and B. H. Choi , “Formation and microwave dielectric properties of the Mg2V2O7 ceramics,” J. Am. Soc., 92 [7] 1621–1624 (2009).
    [11] Liang Fangn,FeiXiang,CongxueSu,HuiZhang, “A novel low firing microwave dielectric ceramic NaCa2Mg2V3O12,”Ceram.Int.39 [8] 9779–9783(2013).
    [12] Congxue Su, LiangFang, ZhenhaiWei, XiaojunKuang, HuiZhang, “ LiCa3ZnV3O12: a novel low-firing, highQ microwave dielectric ceramic, ” Ceram. Int.,40 [3] 5015–5018 (2014).
    [13] Liang Fang, CongxueSu, HuanfuZhou, ZhenhaiWei, HuiZhang, “ Novel low-firing microwave dielectric ceramic LiCa3MgV3O12 with low dielectric loss, ” J.Am.Ceram.Soc.96 [3] 688–690 (2013).
    [14] Mi-Ri Joung, Jin-SeongKim, Myung-EunSong, SahnNahm, “ Low- temperature sintering and microwave dielectric properties of the Li2CO3-Added Ba2V2O7 ceramics, ” J.Am.Ceram.Soc.,93 [4] 934–936 (2010).
    [15] Liang Fangn, ZhenhaiWei, CongxueSu, FeiXiang, HuiZhang “Novel low-firing microwave dielectric ceramics : BaMV2O7 (M = Mg, Zn) ,” Ceram. Int.,40 [10] 16835–16839 (2014).
    [16] E. K. Suresh, A. N. Unnimaya, A. Surjith, and R. Ratheesh, “New vanadium based Ba3MV4O15 (M = Ti and Zr) high Q ceramics for LTCC applications,” Ceram. Int., 39 [4] 3635–3639 (2013).
    [17] Huanfu Zhoun, FenHe,XiuliChen, JieChen, LiangFang, WeiWang, YanbingMiao, “A novel thermally stable low-firing LiMg4V3O12 ceramic: Sintering characteristic, crystal structure and microwave dielectric properties ,” Ceram. Int. ,40 [4] 6335–6338 (2014).
    [18] G. G. Yao , and H. W. Zhang , “Novel series of Low-Firing Microwave Dielectrics Ceramics: Ca5A4(VO4)6 (A2+ = Mg, Zn),” J. Am. Ceram. Soc., 96 [6] 1691–1693 (2013).
    [19] R. L. Geiger, P. E. Allen, and N. R. Strader, VLSI Design Techniques for Analog and Digital Circuits, McGraw-Hill, (1990).
    [20] R.A. Pucel, D. J. Masse, C.P. Hartwig, “Losses in microstrip”, 16 [6] 342–350 (1968)
    [21] J. S. Hong and M. J. Lancaster, Microstrip Filters for RF/Microwave Applications, John Wiley & Sons, (2001).
    [22] G. Kompa, Practical Microstrip Design and Applications, Artech House, (2005).
    [23] K. C. Gupta, R. Garg, I. Bahl, and P. Bhartia, “Microstrip Lines and Slotlines,” Second Edition, Artech House, (1996).
    [24] G. L. Matthaei, L. Young, E. M. T. Jones, “Microwave filters, impedence matching networks and coupling structures,” Artech House, (1980).
    [25] E. J. Denlinger, “Losses of microstrip lines,” IEEE Trans. Microwave Theory Tech. 28 [6] 513–522 (1980).
    [26] K. Chang, Microwave Ring Circuits and Antennas. New York: Wiley, (1996).
    [27] I. Wolff, “Microstrip Bandpass Filter Using Degenerate Modes of a MicrostripRing Resonator, ” IEEE Electron Letter, 8 [12] 302-303 (1972).
    [28] Hiroyuki Yabuki, Morikazu Sagawa, Michiaki Matsuo and Mitsuo Makimoto,“Stripline Dual-Mode Ring Resonators and Their Application to Microwave Devices,” IEEE Transactions On Microwave Theory and Techniques, 44 [5] (1996).
    [29] Morikazu Sagawa, Mitsuo Makimoto and Sadahiko Yamashita, “ Geometrical Structures and Fundamental Characteristics of Microwave Steppd-Impedance Resonators,” IEEE Transactions On Microwave Theory and Techniques, 45 [7] (1997).
    [30] Michiaki Matsuo, Hiroyuki Yabuki, and Mitsuo Makimoto, “ Dual-Mode Stepped-Impedance Ring Resonator for Bandpass Filter Applications,” IEEE Transactions On Microwave Theory and Techniques,49 [7] (2001).
    [31] Arun Chandra Kundu and Ikuo Awai, “ Control of Attenuation Pole Frequency of a Dual-Mode Microstrip Ring Resonator Bandpass Filter,” IEEE Transactions On Microwave Theory and Techniques, 49 [6] (2001).
    [32] Lei Zhu; Ke Wu, "Line-to-ring coupling circuit model and its parametric effects for optimized design of microstrip ring circuits and antennas," Microwave Symposium Digest, 1997., IEEE MTT-S International , 1 289-292 (1997).
    [33] Zhu, Lei; Ke Wu, "A joint field/circuit model of line-to-ring coupling structures and its application to the design of microstrip dual-mode filters and ring resonator circuits," IEEE Transactions on Microwave Theory and Techniques ,47 [10] 1938-1948 (1999).
    [34] B. W. Hakki and P. D. Coleman, “A dielectric resonator method of measuring inductive capacities in the millimeter range,” IEEE Trans. Microwave Theory Tech., 8 [4] 402–410 (1960).
    [35] W. E. Courtney, “Analysis and evaluation of a method of measuring the complex permittivity and permeability of microwave insulators,” IEEE Trans. Microwave Theory Tech., 18 [8] 476–485 (1970).
    [36] P. Wheless and D. Kajfez, “The use of higher resonant modes in measuring the dielectric constant of dielectric resonators,” IEEE Trans. Microwave Theory Tech., 85 [1] 473–476 (1985).
    [37] Y. Kobayashi and M. Katoh, “Microwave measurement of dielectric properties of low-loss materials by the dielectric rod resonator method,” IEEE Trans. Microwave Theory Tech., 33 [7] 586–592 (1985).
    [38] Study and Applications of Low-Firing Ceramics (Ba1-xSrx)Mg2(VO4)2(x=0-1) at Microwave Frequency (2014).
    [39]A. Grzechnik, P. F. McMillan, “High pressure behavior of Sr3(VO4)2 and Ba3(VO4)2,” J. Solid State Chem., 132, 156–162 (1997).

    下載圖示 校內:2025-08-01公開
    校外:2025-08-01公開
    QR CODE