| 研究生: |
林峰正 Lin, Feng-Zheng |
|---|---|
| 論文名稱: |
低溫燒結陶瓷材料Ba(Co1-xMgx)2(VO4)2
(x = 0–0.8)在微波頻段之研究與應用 Study and Applications of Low-Firing Ceramics Ba(Co1-xMgx)2(VO4)2 (x = 0–0.8) at Microwave Frequency |
| 指導教授: |
黃正亮
Huang, Cheng-Liang |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2015 |
| 畢業學年度: | 103 |
| 語文別: | 中文 |
| 論文頁數: | 112 |
| 中文關鍵詞: | 微波介電材料 、帶通濾波器 |
| 外文關鍵詞: | LTCC, microwave dielectric ceramics, bandpass filter |
| 相關次數: | 點閱:98 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本篇論文主要分別介紹兩大部分,第一部分將介紹新開發的低損耗微波介電材料;第二部分將設計一濾波器,實作於不同基板上後探討其微波特性。
第一部分首先介紹BaCo2(VO4)2陶瓷之微波介電特性,接著使用與Co2+ (0.745Å)離子半徑相近的Mg2+(0.72Å)對BaCo2(VO4)2中的Co2+做取代,並探討Ba(Co1-xMgx) 2(VO4)2 (x = 0–0.8)的微波介電特性與材料微結構。由實驗得知,當取代比例為x = 0.6,且燒結溫度在840oC時有良好的微波介電特性,εr ~12.3, Q×f~71,000 GHz, τf ~ –40.6 ppm/°C,是符合LTCC共燒溫度的材料。
第二部分將設計一操作在2.4/5.2GHz的雙頻帶通濾波器。濾波器採用方形環狀諧振器為主體,為縮小面積,將其改成增強型彎曲環狀諧振器,並在其對稱面上加入一正方形電容性微擾物,以激發奇偶模態的耦合,接著使用line-to-ring coupling的方式饋入以改善插入損耗。最後,我們將電路實作在FR4、Al2O3、Ba(Co0.6 Mg 0.4)2(VO4)2基板上,並量測其頻率響應。由量測的結果可得知,利用高介電係數及低損耗的材料做為電路基板時,確實能達到提升效能和縮小面積的需求。
In order to obtain a novel low-temperature co-fired ceramics (LTCC), the microwave dielectric properties of Ba(Co1-x Mg x)2(VO4)2 (x = 0–0.8) ceramics had been investigated. The experimental results show that BaCo2(VO4)2 has the best properties at sintering temperature 690℃ for 4 hours, with ε_r~14.1, Q×f~ 43,600 GHz, and τf ~-43 ppm/℃. Then the Co2+ from the BaCo2(VO4)2 had been substituted by Mg2+, at x = 0.6, where the ε_r~12.3, Q×f~71,000, τf ~-40.6 ppm/℃at the sintering temperature of 840℃ for 4 hours. Then, we designed and fabricated a bandpass filter on FR4、Al2O3、Ba(Co0.6 Mg 0.4) 2(VO4)2 substrates. According to the results of measurements, the performance of the filter was improved by using low-loss dielectric ceramics as the substrate.
[1] W. F. Smith, 劉品均(譯), 施佑蓉(譯), 材料科學與工程, 第三版, 高立圖書, (2005).
[2] D. M. Pozar, Microwave engineering, Addison-Wesley (1998).
[3] D. Kajfez, “Basic principle give understanding of dielectric waveguides and resonators,” Microwave SysTFm News., 13, 152–161 (1983).
[4] D. Kajfez, A. W. Glisson, and J. James, “Computed model field distributions for isolated dielectric resonators,” IEEE Trans. Microwave Theory Tech., 32 [12] 1609–1616 (1984).
[5] 張盛富, 戴明鳳, 無線通信之射頻被動電路設計, 全華出版社, (1998).
[6] 鄭景太, 淺談高頻低損失介電材料, 工業材料, 176期, (2001).
[7] W. D. Kingery, H. K. Bowen, D. R. Uhlmann, 陳皇鈞(譯), “陶瓷材料概論,” 曉園出版社, (1988).
[8] 余樹楨, “晶體之結構與性質,” 渤海堂文化公司, (2007).
[9] R. Umemura, H. Ogawa, H. Ohsato, A. Kan, and A. Yokoi, “Microwave dielectric properties of low-temperature sintered Mg3(VO4)2 ceramic,” J. Eur. Ceram. Soc., 25 2865-2870 (2005).
[10] M. R. Joung, J. S. Kim, M. E. Song, S. Nahm, J. H. Paik, and B. H. Choi , “Formation and microwave dielectric properties of the Mg2V2O7 ceramics,” J. Am. Soc., 92 [7] 1621–1624 (2009).
[11] Liang Fangn,FeiXiang,CongxueSu,HuiZhang, “A novel low firing microwave dielectric ceramic NaCa2Mg2V3O12,”Ceram.Int.39 [8] 9779–9783(2013).
[12] Congxue Su, LiangFang, ZhenhaiWei, XiaojunKuang, HuiZhang, “ LiCa3ZnV3O12: a novel low-firing, highQ microwave dielectric ceramic, ” Ceram. Int.,40 [3] 5015–5018 (2014).
[13] Liang Fang, CongxueSu, HuanfuZhou, ZhenhaiWei, HuiZhang, “ Novel low-firing microwave dielectric ceramic LiCa3MgV3O12 with low dielectric loss, ” J.Am.Ceram.Soc.96 [3] 688–690 (2013).
[14] Mi-Ri Joung, Jin-SeongKim, Myung-EunSong, SahnNahm, “ Low- temperature sintering and microwave dielectric properties of the Li2CO3-Added Ba2V2O7 ceramics, ” J.Am.Ceram.Soc.,93 [4] 934–936 (2010).
[15] Liang Fangn, ZhenhaiWei, CongxueSu, FeiXiang, HuiZhang “Novel low-firing microwave dielectric ceramics : BaMV2O7 (M = Mg, Zn) ,” Ceram. Int.,40 [10] 16835–16839 (2014).
[16] E. K. Suresh, A. N. Unnimaya, A. Surjith, and R. Ratheesh, “New vanadium based Ba3MV4O15 (M = Ti and Zr) high Q ceramics for LTCC applications,” Ceram. Int., 39 [4] 3635–3639 (2013).
[17] Huanfu Zhoun, FenHe,XiuliChen, JieChen, LiangFang, WeiWang, YanbingMiao, “A novel thermally stable low-firing LiMg4V3O12 ceramic: Sintering characteristic, crystal structure and microwave dielectric properties ,” Ceram. Int. ,40 [4] 6335–6338 (2014).
[18] G. G. Yao , and H. W. Zhang , “Novel series of Low-Firing Microwave Dielectrics Ceramics: Ca5A4(VO4)6 (A2+ = Mg, Zn),” J. Am. Ceram. Soc., 96 [6] 1691–1693 (2013).
[19] R. L. Geiger, P. E. Allen, and N. R. Strader, VLSI Design Techniques for Analog and Digital Circuits, McGraw-Hill, (1990).
[20] R.A. Pucel, D. J. Masse, C.P. Hartwig, “Losses in microstrip”, 16 [6] 342–350 (1968)
[21] J. S. Hong and M. J. Lancaster, Microstrip Filters for RF/Microwave Applications, John Wiley & Sons, (2001).
[22] G. Kompa, Practical Microstrip Design and Applications, Artech House, (2005).
[23] K. C. Gupta, R. Garg, I. Bahl, and P. Bhartia, “Microstrip Lines and Slotlines,” Second Edition, Artech House, (1996).
[24] G. L. Matthaei, L. Young, E. M. T. Jones, “Microwave filters, impedence matching networks and coupling structures,” Artech House, (1980).
[25] E. J. Denlinger, “Losses of microstrip lines,” IEEE Trans. Microwave Theory Tech. 28 [6] 513–522 (1980).
[26] K. Chang, Microwave Ring Circuits and Antennas. New York: Wiley, (1996).
[27] I. Wolff, “Microstrip Bandpass Filter Using Degenerate Modes of a MicrostripRing Resonator, ” IEEE Electron Letter, 8 [12] 302-303 (1972).
[28] Hiroyuki Yabuki, Morikazu Sagawa, Michiaki Matsuo and Mitsuo Makimoto,“Stripline Dual-Mode Ring Resonators and Their Application to Microwave Devices,” IEEE Transactions On Microwave Theory and Techniques, 44 [5] (1996).
[29] Morikazu Sagawa, Mitsuo Makimoto and Sadahiko Yamashita, “ Geometrical Structures and Fundamental Characteristics of Microwave Steppd-Impedance Resonators,” IEEE Transactions On Microwave Theory and Techniques, 45 [7] (1997).
[30] Michiaki Matsuo, Hiroyuki Yabuki, and Mitsuo Makimoto, “ Dual-Mode Stepped-Impedance Ring Resonator for Bandpass Filter Applications,” IEEE Transactions On Microwave Theory and Techniques,49 [7] (2001).
[31] Arun Chandra Kundu and Ikuo Awai, “ Control of Attenuation Pole Frequency of a Dual-Mode Microstrip Ring Resonator Bandpass Filter,” IEEE Transactions On Microwave Theory and Techniques, 49 [6] (2001).
[32] Lei Zhu; Ke Wu, "Line-to-ring coupling circuit model and its parametric effects for optimized design of microstrip ring circuits and antennas," Microwave Symposium Digest, 1997., IEEE MTT-S International , 1 289-292 (1997).
[33] Zhu, Lei; Ke Wu, "A joint field/circuit model of line-to-ring coupling structures and its application to the design of microstrip dual-mode filters and ring resonator circuits," IEEE Transactions on Microwave Theory and Techniques ,47 [10] 1938-1948 (1999).
[34] B. W. Hakki and P. D. Coleman, “A dielectric resonator method of measuring inductive capacities in the millimeter range,” IEEE Trans. Microwave Theory Tech., 8 [4] 402–410 (1960).
[35] W. E. Courtney, “Analysis and evaluation of a method of measuring the complex permittivity and permeability of microwave insulators,” IEEE Trans. Microwave Theory Tech., 18 [8] 476–485 (1970).
[36] P. Wheless and D. Kajfez, “The use of higher resonant modes in measuring the dielectric constant of dielectric resonators,” IEEE Trans. Microwave Theory Tech., 85 [1] 473–476 (1985).
[37] Y. Kobayashi and M. Katoh, “Microwave measurement of dielectric properties of low-loss materials by the dielectric rod resonator method,” IEEE Trans. Microwave Theory Tech., 33 [7] 586–592 (1985).
[38] Study and Applications of Low-Firing Ceramics (Ba1-xSrx)Mg2(VO4)2(x=0-1) at Microwave Frequency (2014).
[39]A. Grzechnik, P. F. McMillan, “High pressure behavior of Sr3(VO4)2 and Ba3(VO4)2,” J. Solid State Chem., 132, 156–162 (1997).