| 研究生: |
游本傳 Yu, Ben-Chuan |
|---|---|
| 論文名稱: |
15-kW數位控制式高週波加熱系統之自動頻率追蹤 Automatic Frequency Tracking for a 15-kW Digital Controlled High-Frequency Heating System |
| 指導教授: |
戴政祺
Tai, Cheng-Chi |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2012 |
| 畢業學年度: | 100 |
| 語文別: | 中文 |
| 論文頁數: | 61 |
| 中文關鍵詞: | 高週波 、自動頻率追蹤 、微控制器 |
| 外文關鍵詞: | high-frequency systems, automatic frequency tracking, microcontroller chip |
| 相關次數: | 點閱:123 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
高週波感應加熱是利用電磁感應方式,對金屬做加熱處理。惟目前市面上之商用高週波系統可加熱頻寬通常不大,一般機種約介於30 ~100 kHz之間,且無法精確定頻,也不能調控頻率。如果為了使高週波系統頻寬增大而更換高週波內部的諧振電容與加熱線圈,工作的諧振頻率點將隨之而改變。由於大電力系統線路複雜會產生寄生電感及電容,在此情況下將無法預知正確的諧振頻率點,必須利用高頻往低頻掃描的方式,找到高週波在輸出不同電流下的頻率,稱為自動頻率追蹤的方式,以避免電路操作在諧振點或電容性負載造成危險。本論文探討使用微控制器晶片控制15 kW高週波之輸出電流,並實際整合測試自動頻率追蹤機制。
High-frequency induction heating employed electromagnetic induction to heat the metal. However, the bandwidth that can be used for heating is not sufficiently wide for current commercial high-frequency induction heating machine. In general, their bandwidth is approximately 30~100 kHz and they are neither capable of setting the frequency accurately nor controlling the frequency. If the capacitors and the heating coil are replaced to expand the bandwidth of the high-frequency system, the operating resonant frequency changes as well. Because of the parasitic inductance and capacitance introduced by the complex circuit of the power system, the exact resonant frequency could not be predicted. The high-frequency band should be scanned from high to low, to obtain the frequency corresponding to the different output current, which is named Automatic Frequency Tracking. This should be done as a preventive measure against the danger caused by the circuit operating at the resonant point and the capacitive load. This thesis investigates use of microcontroller chips to control the output current of a 15 KW high-frequency system, and integrates and experiments with the automatic frequency tracking mechanism.
[1] 呂桂泉,別把癌症看得太可怕:腫瘤診治的30年手記,白橡文化出版社,民國九十九年。
[2] G. J. Gordon, Bioinformatics in cancer and cancer therapy, Totowa, NJ: Humana, 2009.
[3] M. Schwab, Encyclopedia of cancer, New York: Springer, 2009.
[4] 張梅蘭,物理因子治療學 冷、熱光、水療及機械性治療,合記出版社,民國九十一年。
[5] B. Ribba, B. You, M. Tod, P. Girard, B. Tranchand, V. Trillet-Lenoir, and G. Freyer, "Chemotherapy may be delivered based on an integrated view of tumour dynamics," IET, vol. 3, pp. 180-190, 2009.
[6] C. A. Sawyer, A. H. Habib, K. Miller, K. N. Collier, C. L. Ondeck, and M. E. McHenry, "Modeling of temperature profile during magnetic thermotherapy for cancer treatment," Journal of Applied Physics, vol. 105, pp. 07B320-07B320-3, 2009.
[7] L. Yong, K. S. Leung, and T. S. K. Mok, "A novel evolutionary drug scheduling model in cancer chemotherapy," IEEE Transactions on Information Technology in Biomedicine, vol. 10, pp. 237-245, 2006.
[8] X. Wang, J. Tang, and L. Shi, "Induction Heating of Magnetic Fluids for Hyperthermia Treatment," Magnetics, IEEE Transactions on, vol. 46, pp. 1043-1051, 2010.
[9] F. Wu, W. Chen, J. Bai, J. Zou, Z. Wang, H. Zhu, and Z. Wang, "Tumor vessel destruction resulting from high-intensity focused ultrasound in patients with solid malignancies," Ultrasound in medicine & biology, vol. 28, pp. 535-542, 2002.
[10] 陳熹棣,高週波基礎理論與應用 淬火、微波加熱、電漿、超音波加工,全華圖書,民國九十四年。
[11] E. B. David, C. Christine, G. Cordula, W. Fritz, D. L. Theodore , and I. Robert , "Magnetic nanoparticle heating efficiency reveals magneto-structural differences when characterized with wide ranging and high amplitude alternating magnetic fields," Journal of Applied Physics, vol. 109, pp. 124904-124904-8, 2011.
[12] R. Kappiyoor, M. Liangruksa, R. Ganguly, and I. K. Puri, "The effects of magnetic nanoparticle properties on magnetic fluid hyperthermia," Journal of Applied Physics, vol. 108, pp. 094702-094702-8, 2010.
[13] M. Bekovic and A. Hamler, "Determination of the Heating Effect of Magnetic Fluid in Alternating Magnetic Field," Magnetics, IEEE Transactions on, vol. 46, pp. 552-555, 2010.
[14] R. Gilchrist, R. Medal, W. Shorey, R. Hanselman, J. Parrott, and C. Taylor, "Selective inductive heating of lymph nodes," Annals of Surgery, vol. 146, pp. 596-606, 1957.
[15] A. Jordan, R. Scholz, P. Wust, H. Fähling, and F. Roland, "Magnetic fluid hyperthermia (MFH): Cancer treatment with AC magnetic field induced excitation of biocompatible superparamagnetic nanoparticles," Journal of Magnetism and Magnetic Materials, vol. 201, pp. 413-419, 1999.
[16] 陳明坤、戴政祺,“半橋式串聯共振變流器於磁性奈米粒子熱療系統之應用”,生物醫學工程科技研討會暨國科會醫學工程學門成果發表會,2006。
[17] 陳建良、戴政祺,“變頻半橋感應式磁奈米粒熱療加熱系統”,生物醫學工程科技研討會暨國科會醫學工程學門成果發表會,2007。
[18] 陳建璋、戴政祺,“半橋串聯共振式磁奈米粒熱療加熱系統研製”,生物醫學工程科技研討會暨國科會醫學工程學門成果發表會,2007。
[19] 陳建璋,“半橋串聯共振式磁奈米粒熱療加熱系統研製”,成功大學電機工程學系碩士論文,2007。
[20] C. C. Chen, C. C. Tai, J. L. Chen, "The design of an applicator and half-bridge series-resonant type heating system for magnetic nanoparticle thermotherapy," IEEE International Magnetics Conference, 2009.
[21] 陳建良,“變頻半橋感應式磁奈米粒熱療加熱系統”,成功大學電機工程學系碩士論文,2007。
[22] 陳俊成,“應用於奈米磁粒之半橋串聯諧振式雙頻耦合熱療加熱系統”,成功大學電機工程學系碩士論文,2008。
[23] 蘇信華,“奈米磁粒熱療感應加熱系統之研製”,成功大學電機工程學系碩士論文,2008。
[24] 蘇信華、戴政祺,“磁奈米粒熱療感應加熱系統之研製”,生物醫學工程科技研討會暨國科會醫學工程學門成果發表會,2008。
[25] 林子翔,“奈米粒熱療加熱系統之中低頻磁場聚焦探頭設計”,成功大學電機工程學系碩士論文,2009。
[26] 孔維彬,“奈米磁粒感應加熱線圈設計與聚磁效應模擬”,成功大學電機工程學系碩士論文,2009。
[27] 徐彬翔,“高頻感應加熱器之DSP數位控制設計”,成功大學電機工程學系碩士論文,2011。
[28] 陳勁克,“以DSP建構數位監控系統於腫瘤電磁熱療加熱器”,成功大學電機工程學系碩士論文,2011。
[29] 曾名弘,“奈米粒熱療加熱系統之模擬與探頭模型分析”,成功大學電機工程學系碩士論文,2011。
[30] 張俊評,“同步降壓型直流對直流轉換器效率改善之研究”,逢甲大學電子工程學系碩士論文,2006。
[31] W. Feng, P. Mattavelli, F. C. Lee, and F. Dianbo, "LLC converters with automatic resonant frequency tracking based on synchronous rectifier (SR) gate driving signals," Applied Power Electronics Conference and Exposition (APEC), 2011 Twenty-Sixth Annual IEEE, pp. 1-5, 2011.
[32] 趙中興,感測器,全華圖書,民國九十五年。
[33] 賴耿陽,高週波工業應用技術,復漢,民國七十六年。
[34] 謝沐田,高低頻變壓器設計,全華圖書,民國九十七年。
[35] P. Kongsakorn and A. Jangwanitlert, "A two-output high frequency series-resonant induction heater," Electrical Engineering/Electronics Computer Telecommunications and Information Technology (ECTI-CON), 2010 International Conference on, pp. 842-845, 2010.
[36] N. A. Ahmed, "High-Frequency Soft-Switching AC Conversion Circuit With Dual-Mode PWM/PDM Control Strategy for High-Power IH Applications," Industrial Electronics, IEEE Transactions on, vol. 58, pp. 1440-1448, 2011.
[37] "TMS320F28235 Digital Signal Controllers Data Manual," Texas Instruments, 2007.
[38] H. T. Wang, Z. Zhang, and X. Y. Liu, "Design of Control System for Brushless DC Motor Based on TMS320F28335," Measuring Technology and Mechatronics Automation (ICMTMA), 2011 Third International Conference on, vol. 1, pp. 954-958, 2011.
[39] L. Zhao, B. Li, X. Wu, M. Zhang, and J. Zhang, "A drive circuit of MOSFET for ultrasonic power," Mechatronic Science, Electric Engineering and Computer (MEC), 2011 International Conference on, pp. 1911-1914, 2011.
[40] P. Anthony, N. N. Mc, R. H. Der, G. Duncan, and G. Hearn, "A magnetically isolated gate driver for high-speed voltage sharing in series-connected MOSFETs," Power Electronics and Applications (EPE 2011), Proceedings of the 2011-14th European Conference on, pp. 1-10, 2011.
[41] T. Ito, M. Miyamae, K. Matsuse, and M. Tsukahara, "Inverter for induction heating analysis of a high frequency quasi-resonant," Electrical Machines and Systems (ICEMS), 2011 International Conference on, pp. 1-4, 2011.
[42] 梁適安,交換式電源供給器之理論與實務設計,全華圖書,民國八十三年。
[43] 孫孝峰、顧和榮、王立喬,高頻開關型逆變器及其並聯並網技術,機械工業出版社,民國一百年。
[44] M. Kazimierczuk and D. Czarkowski, Resonant Power Converters, Wiley-Interscience: Solutions Manual, 1995.
[45] 林佑歷,“輔以自動調頻控制之定電流超音波共振系統研製”,成功大學電機工程學系碩士論文,2010。
[46] Z. Zhang and Z. Tang, "Pulse frequency modulation LLC series resonant X-ray power supply," Consumer Electronics, Communications and Networks (CECNet), 2011 International Conference on, pp. 1532-1535, 2011.
[47] J. Jang, M. Joung, S. Choi, Y. Choi, and B. Choi, "Current mode control for LLC series resonant dc-to-dc converters," Applied Power Electronics Conference and Exposition (APEC), 2011 Twenty-Sixth Annual IEEE, pp. 21-27, 2011.
[48] C. Liu, "Frequency control system based on PWM," Communication Software and Networks (ICCSN), 2011 IEEE 3rd International Conference on, pp. 623-625, 2011.
[49] C.-Z. Li, S.-S. Wang, L. Han, and L. Xu, "Design of PFM, PWM and PPM LD Driver Circle for Dual Beam Laser Fuze," Photonics and Optoelectronic (SOPO), 2010 Symposium on, pp. 1-3, 2010.
[50] B. John, V. George, and M. K. Mishra, "A simplified three phase PWM rectifier with fixed frequency modulation," Computer and Automation Engineering (ICCAE), 2010 The 2nd International Conference on, vol. 5, pp. 83-87, 2010.
[51] H. C. Chen, "A high-resolution digital PWM controller using capacitor integration," Next-Generation Electronics (ISNE), 2010 International Symposium on, pp. 166-169, 2010.
[52] C. T. Pan, C. M. Lai, and Y. L. Juan, "Output Current Ripple-Free PWM Inverters," Circuits and Systems II: Express Briefs, IEEE Transactions on, vol. 57, pp. 823-827, 2010.
校內:2017-12-31公開