研究生: |
林子祥 Lin, Tzu-Hsiang |
---|---|
論文名稱: |
預測板鰭式熱沉於各種矩形外殼內之熱傳特性 Estimation of Heat Transfer Characteristics on Plate-Fin Heat Sinks with Various Rectangular Enclosures |
指導教授: |
陳寒濤
Chen, Han-Taw |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
論文出版年: | 2015 |
畢業學年度: | 103 |
語文別: | 中文 |
論文頁數: | 97 |
中文關鍵詞: | 逆算法 、自然對流 、板鰭式熱沉 、矩形外殼 、熱傳係數 |
外文關鍵詞: | inverse method, natural convection, plate-fin heat sink, rectangular enclosure, heat transfer coefficient |
相關次數: | 點閱:143 下載:9 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本文以逆算法與CFD軟體配合實驗數據探討矩形鰭片置於各種不同矩形外殼內之熱傳及流體流動特性,並探討鰭片間距、外殼大小與風速對結果之影響。由於鰭片上的熱傳係數並非均勻分佈,故將鰭片表面分割成數個子區域並假設各子區域之熱傳係數為常數,再利用結合有限差分法、最小平方法及實驗溫度量測值之逆算法來預測鰭片上的熱傳係數;本文亦利用CFD軟體求得於外殼內之空氣溫度與速度分佈以及鰭片表面之溫度與熱傳係數,為了求出本研究較正確之熱傳及流體流動特性,選用適當的流動模式及網格格點數所求得之鰭片熱傳係數,須盡可能分別接近實驗溫度量測值、逆算結果及先前之結果。結果顯示,流動模式對結果之影響不容忽視,於封閉殼內鰭片上的自然對流平均熱傳係數會隨鰭片間距、外殼長度的增加而增大,且開孔後的外殼高度可有效提升煙囪效應的效果;而封閉殼內鰭片上的混合對流平均熱傳係數則隨外殼長度的縮小而降低,若小於某長度後,加裝風扇的散熱效果則不比外殼開孔下之自然對流為佳,此外,風扇的作用亦使得外殼高度的影響變小。為了驗證本文逆算法預測結果之可靠度,亦與其它相關文獻之經驗公式以及CFD軟體之模擬進行比較。
This study applies inverse method and FLUENT to determine the heat transfer and fluid flow characteristics of plate-fin heat sinks with various enclosures and whether to install the axial-flow fan inside. Using measured data to forecast and analyze the average heat transfer coefficient on the fin in limited space. The inverse method along with the finite difference method and experimental temperature data is applied to determine the heat transfer coefficient. Since the distribution of the heat transfer coefficient on the fin is not uniform, the plate-fin is divided into several sub-fin regions and the heat transfer coefficient in each sub-fin region is assumed to be unknown constant. The results indicate that the heat transfer coefficient increase with increasing fin spacings and lengths of the enclosure in natural convection. Increasing the heights of enclosure can effectively enhance the stack effect after using some openings. But the average heat transfer coefficient decreases with decreasing length of the enclosure in mixed convection. If the length of the enclosure less than a given value, the heat dissipation of fins with axial-flow fan in mixed convection is worse than which inside of the enclosure with openings in natural convection. At the same time, the effect of the height of the enclosure decreases when using axial-flow fan. In order to verify the reliability of the inverse method with predicted results of this paper, the present study also in comparison with the empirical corelations of other relevant literature and CFD simulation packages.
[1] W. Elenbass, ‘‘Heat dissipation of parallel plates by free convection,’’ Physica, vol. 9, No.1 (1942), pp. 2-28.
[2] K.E. Starner, H.N. McManus, “An experimental investigation of free-convection heat transfer from rectangular fin arrays,” ASME J. Heat Transfer, vol. 85 (1963), pp. 273-278.
[3] F. Harahap, H.N. McManus, Jr., “Natural convection heat transfer from horizontal rectangular fin arrays,” ASME J. Heat Transfer, vol. 89 (1967), pp. 32-38.
[4] F. Harahap, D. Setio, “Correlations for heat dissipation and natural convection heat-transfer from horizontally-based, vertically-finned arrays,” Appl. Energy, vol. 69 (2001), pp. 29-38.
[5] F. Harahap, E. Rudianto, IGD. M.E. Pradnyana, ‘‘Measurements of steady-state heat dissipation from miniaturized horizontally-based straight rectangular fin arrays,’’ Heat Mass Transfer, vol. 41 (2005), pp. 280-288.
[6] E.M. Sparrow, A. Haji-Sheikh, T.S. Lundgren, ‘‘The inverse problem in transient heat conduction,’’ J. Appl. Mech., vol. 31 (1964), pp. 369-375.
[7] S. Baskaya, M. Sivirioglu, M. Ozek, ‘‘Parametric study of natural convection heat transfer from horizontal rectangular fin arrays,’’ Int. J. Therm. Sci., vol. 39 (2000), pp. 797-805.
[8] I. Tari, M. Mehrtash, ‘‘Natural convection heat transfer from horizontal and slightly inclined plate-fin heat sinks,’’ J. Appl. Thermal Engin., vol. 61 (2013), pp. 728-736.
[9] N.C. Markatos, K.A. Pericleous, “Laminar and turbulent natural convection in an enclosed cavity,” Int. J. Heat Mass Transfer, vol. 27 (1984), pp. 755-772.
[10] C.W. Leung, S.D. Probert, M.J. Shilston, “Heat exchanger design: optimum uniform separation between rectangular fins protruding from a vertical rectangular base,” Applied Energy, vol. 19 (1985), pp. 287-299.
[11] M. Hasnaoui, P. Vasseur, E. Bilgen, “Natural convection in rectangular enclosures with adiabatic fins attached on the heated wall,” Wärme- und Stoffübertragung, vol. 27 (1992), pp. 357-368.
[12] T.S. Fisher, K.E. Torrance, ‘‘Free convection limits for pin-fin cooling,’’ ASME J. Heat Transfer, vol. 120 (1998), pp. 633-640.
[13] E. Yu, Y. Joshi, ‘‘Heat transfer enhancement from enclosed discrete components using pin-fin heat sinks,’’ Int. J. Heat Mass Transfer, vol. 45 (2002), pp. 4957-4966.
[14] E. Arquis, M. Rady, “Study of natural convection heat transfer in a finned horizontal fluid layer,” Int. J. Thermal Science, vol. 44 (2005), pp. 43-52.
[15] S.A. Nada, ‘‘Natural convection heat transfer in horizontal and vertical closed narrow enclosures with heated rectangular finned base plate,’’ Int. J. Heat Mass Transfer, vol. 50 (2007), pp. 667-679.
[16] H.G. Yancin, S. Baskaya, M. Sivrioglu, ‘‘Numerical analysis of natural convection heat transfer from rectangular shrouded fin arrays on a horizontal surface,’’ Int. Comm. Heat Mass Transfer, vol. 35 (2008), pp. 299-311.
[17] M. Dogan, M. Sivrioglu, ‘‘Experimental investigation of mixed convection heat transfer from longitudinal fins in a horizontal rectangular channel: in natural convection dominated flow regimes,’’ Energy Conversion and Management, vol. 50 (2009), pp. 2513-2521.
[18] M. Dogan, M. Sivrioglu, ‘‘Experimental investigation of mixed convection heat transfer from longitudinal fins in a horizontal rectangular channel,’’ Int. J. Heat Mass Transfer, vol. 53 (2010), pp. 2149-2158.
[19] J.V. Beck, “Calculation of surface heat flux from an integral temperature history,” ASME J. Heat Transfer, vol. 62 (1962), pp. 46-51.
[20] J.V. Beck, “Surface heat flux determination using an integral method,” Nuclear Engineering Design, vol. 7 (1968), pp. 170-178.
[21] J.V. Beck, B. Litkouhi, C.R. Stclair, “Efficient sequential solution of nonlinear inverse heat-conduction problem,” Numer. Heat Transfer, vol. 5 (1982), pp. 275-286.
[22] N.M. Alnajem, M.N. Özişik, ‘‘A direct analytical approach for solving linear inverse heat conduction problems,’’ ASME J. Heat Transfer, vol 107 (1985), pp. 700-703.
[23] S. Sunil, J.R.N. Reddy, C.B. Sobhan, “Natural convection heat transfer from a thin rectangular fin with a line source at the base – A finite difference solution,” Int. J. Heat Mass Transfer, vol. 31 (1996), pp. 127-135.
[24] E. Velayati, M. Yaghoubi, “Numerical study of convection heat transfer from an array of parallel bluff plates,” Int. J. Heat Fluid Flow, vol. 26 (2005), pp. 80-91.
[25] H.T. Chen, J.P. Song, Y.T. Wang, “Prediction of heat transfer coefficient on the fin inside one-tube plate finned-tube heat exchangers,” Int. J. Heat Mass Transfer, vol. 48 (2005), pp. 2697-2707.
[26] H.T. Chen, W.L. Hsu, “Estimation of heat transfer coefficient on the fin of annular finned-tube heat exchangers in natural convection for various fin spacings,” Int. J. Heat Mass Transfer, vol. 50 (2007), pp. 1750-1761.
[27] H.T. Chen, S.T. Lai, L.Y. Haung, ‘‘Investigation of heat transfer characteristics in plate-fin heat sink,’’ App. Thermal Engineering, vol. 50 (2013), pp. 352-360.
[28] M.N. Özişik, H.R.B. Orlande, ‘‘Inverse heat transfer: Fundamentals and applications,’’ Taylor & Francis, New York (2000).
[29] A.N. Tikhonov, V.Y. Arsenin, ‘‘Solution of ill-posed problems,’’ V. H. Winston & Sons, Washington, DC (1977).
[30] O.M. Alifanov, ‘‘Inverse heat transfer problem,’’ Springer-Verlag, Berlin (1994).
[31] J.V. Beck, B. Blackwell, C.R. St. Clair, ‘‘Inverse heat conduction: ill-posed problems,’’ Wiley Interscience, New York (1985).
[32] V.S. Arpaci, ‘‘Introduction to heat transfer,’’ Prentice Hall, New Jersey (1999), pp. 580.
[33] A. Bejan, ‘‘Heat transfer,’’ John Wiley & Sons, Inc., New York (1993), pp. 53-62.
[34] F.E.M. Saboya, E.M. Sparrow, “Local and average heat transfer coefficients for one-row plate fin and tube heat exchanger configurations,” ASME J. Heat Transfer, vol. 96 (1974), pp. 265-272.
[35] H.T. Chen, J.C. Chou, “Investigation of natural-convection heat transfer coefficient from the vertical fin of finned-tube heat exchangers,” Int. J. Heat Mass Transfer, vol. 49 (1993), pp. 3034-3044.
[36] C.D. Jones, L.F. Smith, “Optimum arrangement of rectangular fins on horizontal surfaces for free-convection heat transfer,”ASME J. Heat Transfer (1970), pp. 6-10.
[37] 何格章,矩形鰭片陣列於矩形外殼內之自然對流熱傳特性預測,國立成功大學機械工程學系,碩士論文,2010。
[38] 賴詩婷,矩行鰭片陣列於具開孔矩形外殼內之熱傳特性研究,國立成功大學機械工程學系,碩士論文,2012。
[39] 賴仲豪,板鰭式熱沉於封閉外殼內之自然對流熱傳特性的實驗與數值研究,國立成功大學機械工程學系,碩士論文,2014。
[40] Q. Chen, W. Xu, ‘‘A zero-equation turbulence model for indoor airflow simulation,’’ energy & buildings, vol 28 (1998), pp. 137-144.
[41] B.E. Launder, D. Spalding, ‘‘The numerical computation of turbulent flows,’’ Computer Methods in Applied Mechanics and Engineering, vol. 3 (1974), pp. 269-289.
[42] V. Yakhot, S.A. Orszag, S. Thangam, T.B. Gatski, C.G. Speziale, ‘‘Development of turbulence models for shear flows by a double expansion technique,’’ Physics of Fluids A, vol. 4 (1992), pp 1510-1520.
[43] FLUENT Dynamic Software, FLUENT, Lehanon, NH (2010).
[44] 陳韋志,預測傾斜矩形平板上之自然對流熱傳特性,國立成功大學機械工程學系,碩士論文,2009。
[45] W.M. Rohsenow, J.P. Hartnett, Y.I. Cho, “Handbook of heat transfer,” 3rd ed., McGraw-Hill, New York, NY (1988).