簡易檢索 / 詳目顯示

研究生: 林俊豪
Lin, Jyun-Hao
論文名稱: 以有機金屬化學氣相磊晶法成長氮化物半導體元件於矽基板及圖形化基板之研製及特性探討
Fabrication and Investigation of Nitride-Based Devices Grown on Si and Patterned Substrate by MOCVD
指導教授: 蘇炎坤
Su, Yan-Kuin
學位類別: 博士
Doctor
系所名稱: 電機資訊學院 - 微電子工程研究所
Institute of Microelectronics
論文出版年: 2015
畢業學年度: 103
語文別: 英文
論文頁數: 149
中文關鍵詞: 氮化鎵化合物半導體高速電子遷移率場效電晶體圖形化基板發光二極體
外文關鍵詞: GaN, HEMT, patterned substrate, LED
相關次數: 點閱:80下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文之主要目的在於探討氮化鎵化合物元件成長於矽(111)基板及圖形化基板時的影響因素,並且運用了許多方法去更一步的提升氮化鎵的磊晶品質以及元件特性。我們運用熱退火循環的技術以及插入低溫氮化鋁,成功的磊晶成長高品質氮化鎵材料於矽基板上,並且將三甲基鎵沉積於高速電子遷移率場效電晶體元件表面,藉由通入氧氣氧化形成氧化鎵介電層來改善元件特性,以及探討常關型元件的機制。最後使用條紋式圖形矽基板來磊晶製造分段式閘極高速電子遷移率場效電晶體以及奈米凹狀圖案藍寶石基板來磊晶製造發光二極體。
    首先探討熱退火循環以及插入低溫氮化鋁對於磊晶品質的影響,藉由高解析X光射線繞射儀、光致發光量測系統、拉曼光譜儀及原子力顯微鏡等量測設備分析磊晶材料的品質,透過實驗進行品質改善,使用這些方法可以有效的讓磊晶層所受的應力從0.98降至0.36 GPa,且插入低溫氮化鋁層可以讓薄膜沒有裂痕的問題。最後製作出高速電子遷移率場效電晶體也顯示出高電流密度(328 mA/mm)以及低源極漏電流(3.2×10−3 mA/mm)的特性,然而其閘極漏電流仍略高(3.8×10−4 mA/mm)。
    接下來使用氧氣氧化元件表面形成氧化介電層來改善元件特性,結果顯示使用此簡單的方式可以有效的讓閘極漏電流下降至1.4×10-6 mA/mm,此外,此介電層亦有鈍化層的特性,因此可以進一步提升元件電流密度。並且研製常關型元件,探討運用凹槽式閘極的缺陷以及使用氟電漿來做改良。臨界電壓可以有效地從-3.8位移至+1.1伏特, 且在閘極電壓比臨界電壓高出2伏特時電流密度為218 mA/mm。
      最後,使用圖形化基板來改善元件特性,藉由改變成長五三比以及壓力於條紋式圖形化矽基板,可以製作出低缺陷的磊晶層,並且可以利用此條紋製作分段式閘極高速電子遷移率場效電晶體,結果顯示此結構元件的飽和電流不會因電壓升高而下降,且電流密度與使用平面式基板相比亦從297 mA/mm提升至 331 mA/mm;此外,我們也使用奈米凹狀圖案藍寶石基板來磊晶成長發光二極體元件,藉由改變凹狀圖案的蝕刻深度,可以有效的提升整體發光二極體的發光效率,隨著蝕刻深度的提升,效率可以從5.29 %提升至6.28 %,並且使用二氧化矽側壁保護層來進一步改進磊晶品質,結果顯示此方法可以有效的提升內部量子效率,因此大幅提升發光效率至11.4 %。

    The main purpose of this study is to investigate the factors that interfere with the quality of GaN grown on Si (111) substrate and patterned substrate. Numerous methods were used to improve the quality of the epitaxial layer and the device characteristics. High-quality GaN was successfully grown on Si substrate by thermal cycle annealing and by inserting low-temperature AlN technique. The HEMT device characteristic was improved by using Ga2O3 as a dielectric, which was formed by trimethylgallium deposited on the surface followed by the O2 annealing process. The normally off device was also fabricated, and its mechanism was investigated. Finally, the distributed gate HEMT was fabricated on a stripe-patterned Si substrate, and LED was fabricated on concave nano-patterned sapphire substrate.
    The effects of thermal cycle annealing and inserting low-temperature AlN on the epitaxial layer were investigated. The film quality was analyzed by XRD, PL, Raman, and AFM measurements. The strain was successfully decreased from 0.98 to GPa 0.36 GPa through experiments, and a crack-free surface was achieved by inserting a low-temperature AlN. The fabricated HEMT showed the characteristics of the high-drain current density (328 mA/mm) and low-drain leakage (3.2×10−3 mA/mm). However, the gate leakage showed a worse property (3.8×10−4 mA/mm).
    The HEMT device characteristic was improved by using Ga2O3 as a dielectric. Ga2O3 was formed upon the deposition of trimethylgallium on the surface followed by the O2 annealing process. The simple method can effectively reduce the gate leakage current to 1.4 × 10-6 mA/mm. The dielectric layer was considered as a thin passivation to improve the drain current density. The normally off device was also fabricated to investigate the recess gate mechanism, and the device improved by fluorine plasma treatment. The threshold voltage can shift from −3.8 to +1.1 V, and the drain current density was 218 mA/mm at VGS-Vth was 2 voltage.
    Finally, patterned substrate was used in this study to enhance the device characteristics. By varying the growth conditions (i.e., V/III ratio and pressure on patterned Si substrate), the low defect density epitaxial layer can be achieve and used to fabricate distributed gate HEMT. The drain current did not decrease with saturation. The drain current was improved from 297 mA/mm to 331 mA/mm compared with that grown on the planar substrate. Meanwhile, the concave nano-patterned sapphire substrate was used to develop a LED structure. By increasing the pattern etching depth, the external quantum efficiency was enhanced from 5.29% to 6.28%. Further improvement may be obtained by using SiO2 sidewall blocking layer. The results indicated that the internal quantum efficiency improved, and thus, the external quantum efficiency also improved to 11.4%.

    Abstract (in Chinese) I Abstract (in English) III Acknowledgement VI Contents VII Table contents XI Figure contents XII Chapter 1 Introduction 1 1.1 Research background and motivation 1 1.2 Organization of the dissertation 4 Bibliography-Chapter 1 5 Chapter 2 High Quality GaN Epitaxial Growth on Si (111) Substrate 14 2.1 Motivation 14 2.2 The effect of thermal cycle annealing process on initial bottom GaN layer grown on Si substrate 15 2.2.1 Experimental details 15 2.2.2 Results and discussion 17 2.3 The effect of a Temperature-varying sandwich buffer layer structure on GaN epitaxial layer grown on Si substrate 21 2.3.1 Experimental details 21 2.3.2 Results and discussion 23 2.4 The effect of inserting LT-AlN layer on GaN grown on Si substrate 27 2.4.1 Experimental details 27 2.4.2 Results and discussion 29 2.5 Summary 34 Bibliography-Chapter 2 36 Chapter 3 Improvement of AlGaN/GaN High Electron Mobility Transistors on Si (111) Substrate 63 3.1 Motivation 63 3.2 Fabrication of AlGaN/GaN-on-Si MIS HEMT using thermal oxidation Ga2O3 dielectric to suppress the leakage current 63 3.2.1 Experimental details 64 3.2.2 Results and discussion 65 3.3 Fabrication of normally off (E-mode) AlGaN/GaN-on-Si HEMT by recessed gate and fluorine treatment 69 3.3.1 Experimental details 69 3.3.2 Results and discussion 70 3.4 Summary 73 Bibliography-Chapter 3 75 Chapter 4 GaN Epitaxial Growth on Patterned Si Substrate 91 4.1 Motivation 91 4.2 AlGaN/GaN HEMT with distributed gate grown on stripe patterned Si (111) substrate 91 4.2.1 Experimental details 92 4.2.2 Results and discussion 93 4.3 Summary 96 Bibliography-Chapter 4 97 Chapter 5 The GaN-Based Light Emitting Diode Growth on Nano Patterned Sapphire Substrate 105 5.1 Motivation 105 5.2 The GaN-Based Light Emitting Diode Grown on Nano patterned Sapphire Substrate 105 5.2.1 Experimental details 106 5.2.2 Results and discussion 107 5.3 The Improvement of GaN-Based LED Grown on Concave Nano-Patterned Sapphire Substrate with SiO2 Blocking layer 111 5.3.1 Experimental details 111 5.3.2 Results and discussion 112 5.4 Summary 117 Bibliography-Chapter 5 119 Chapter 6 Conclusion and Future Prospects 136 6.1 Conclusion 136 6.2 Future prospects 140 Bibliography-Chapter 6 142

    Bibliography-Chapter 1
    [1] Yole Développment, “RF GaN Technology & market analysis: applications, players, devices & substrates 2010-2020”, 2014.
    [2] Yole Développment, “ Power GaN market”, 2014.
    [3] Q. Chen, M. A. Khan, C. Sun, and J. Yang, "Visible-blind ultraviolet photodetectors based on GaN pn junctions," Electronics Letters, vol. 31, pp. 1781-1782, 1995.
    [4] R. Neuberger, G. Müller, O. Ambacher, and M. Stutzmann, "Ion‐Induced Modulation of Channel Currents in AlGaN/GaN High‐Electron‐Mobility Transistors," physica status solidi (a), vol. 183, pp. R10-R12, 2001.
    [5] A. Krost and A. Dadgar, "GaN-based optoelectronics on silicon substrates," Materials Science and Engineering: B, vol. 93, pp. 77-84, 2002.
    [6] E. Butter, G. Fitzl, D. Hirsch, G. Leonhardt, W. Seifert, and G. Preschel, "The deposition of group III nitrides on silicon substrates," Thin Solid Films, vol. 59, pp. 25-31, 1979.
    [7] H. Ishikawa, K. Yamamoto, T. Egawa, T. Soga, T. Jimbo, and M. Umeno, "Thermal stability of GaN on (111) Si substrate," Journal of crystal growth, vol. 189, pp. 178-182, 1998.
    [8] A. Watanabe, T. Takeuchi, K. Hirosawa, H. Amano, K. Hiramatsu, and I. Akasaki, "The growth of single crystalline GaN on a Si substrate using AIN as an intermediate layer," Journal of crystal growth, vol. 128, pp. 391-396, 1993.
    [9] A. Dadgar, J. Bläsing, A. Diez, A. Alam, M. Heuken, and A. Krost, "Metalorganic chemical vapor phase epitaxy of crack-free GaN on Si (111) exceeding 1 µm in thickness," Japanese Journal of Applied Physics, vol. 39, p. L1183, 2000.
    [10] A. Dadgar, M. Poschenrieder, J. Bläsing, K. Fehse, A. Diez, and A. Krost, "Thick, crack-free blue light-emitting diodes on Si (111) using low-temperature AlN interlayers and in situSixNy masking," Applied physics letters, vol. 80, pp. 3670-3672, 2002.
    [11] J. Bläsing, A. Reiher, A. Dadgar, A. Diez, and A. Krost, "The origin of stress reduction by low-temperature AlN interlayers," Applied physics letters, vol. 81, pp. 2722-2724, 2002.
    [12] A. Dadgar, M. Poschenrieder, A. Reiher, J. Bläsing, J. Christen, A. Krtschil, et al., "Reduction of stress at the initial stages of GaN growth on Si (111)," Applied physics letters, vol. 82, pp. 28-30, 2003.
    [13] K. Zang, Y. Wang, L. Wang, S. Chow, and S. Chua, "Defect reduction by periodic SiNx interlayers in gallium nitride grown on Si (111)," Journal of applied physics, vol. 101, pp. 93502-93502, 2007.
    [14] S. Tanaka, Y. Kawaguchi, N. Sawaki, M. Hibino, and K. Hiramatsu, "Defect structure in selective area growth GaN pyramid on (111) Si substrate," Applied Physics Letters, vol. 76, pp. 2701-2703, 2000.
    [15] A. Strittmatter, S. Rodt, L. Reißmann, D. Bimberg, H. Schröder, E. Obermeier, et al., "Maskless epitaxial lateral overgrowth of GaN layers on structured Si (111) substrates," Applied Physics Letters, vol. 78, pp. 727-729, 2001.
    [16] T. Katona, M. Craven, P. Fini, J. Speck, and S. DenBaars, "Observation of crystallographic wing tilt in cantilever epitaxy of GaN on silicon carbide and silicon (111) substrates," Applied Physics Letters, vol. 79, pp. 2907-2909, 2001.
    [17] A. Dadgar, A. Alam, T. Riemann, J. Bläsing, A. Diez, M. Poschenrieder, et al., "Crack‐Free InGaN/GaN Light Emitters on Si (111)," physica status solidi (a), vol. 188, pp. 155-158, 2001.
    [18] Y. Honda, Y. Kuroiwa, M. Yamaguchi, and N. Sawaki, "Growth of GaN free from cracks on a (111) Si substrate by selective metalorganic vapor-phase epitaxy," Applied physics letters, vol. 80, pp. 222-224, 2002.

    Bibliography-Chapter 2
    [1] M. Iwaya, T. Takeuchi, S. Yamaguchi, C. Wetzel, H. Amano, and I. Akasaki, "Reduction of etch pit density in organometallic vapor phase epitaxy-grown GaN on sapphire by insertion of a low-temperature-deposited buffer layer between high-temperature-grown GaN," Japanese journal of applied physics, vol. 37, p. L316, 1998.
    [2] A. Dadgar, J. Bläsing, A. Diez, A. Alam, M. Heuken, and A. Krost, "Metalorganic chemical vapor phase epitaxy of crack-free GaN on Si (111) exceeding 1 µm in thickness," Japanese Journal of Applied Physics, vol. 39, p. L1183, 2000.
    [3] W. Luo, X. Wang, L. Guo, H. Xiao, C. Wang, J. Ran, et al., "Influence of AlN buffer layer thickness on the properties of GaN epilayer on Si (111) by MOCVD," Microelectronics Journal, vol. 39, pp. 1710-1713, 2008.
    [4] H. Lahreche, P. Vennegues, O. Tottereau, M. Laügt, P. Lorenzini, M. Leroux, et al., "Optimisation of AlN and GaN growth by metalorganic vapour-phase epitaxy (MOVPE) on Si (111)," Journal of crystal growth, vol. 217, pp. 13-25, 2000.
    [5] Y. Lu, X. Liu, D.-C. Lu, H. Yuan, Z. Chen, T. Fan, et al., "Investigation of GaN layer grown on Si (111) substrate using an ultrathin AlN wetting layer," Journal of crystal growth, vol. 236, pp. 77-84, 2002.
    [6] M. Wu, B. Zhang, J. Chen, J. Liu, X. Shen, D. Zhao, et al., "Effect of the N/Al ratio of AlN buffer on the crystal properties and stress state of GaN film grown on Si (111) substrate," Journal of crystal growth, vol. 260, pp. 331-335, 2004.
    [7] K. Zang, L. Wang, S.-J. Chua, and C. V. Thompson, "Structural analysis of metalorganic chemical vapor deposited AIN nucleation layers on Si (111)," Journal of crystal growth, vol. 268, pp. 515-520, 2004.
    [8] T. Liang, J. Tang, J. Xiong, Y. Wang, C. Xue, X. Yang, et al., "Synthesis and characterization of heteroepitaxial GaN films on Si (111)," Vacuum, vol. 84, pp. 1154-1158, 2010.
    [9] M. Yamaguchi, A. Yamamoto, M. Tachikawa, Y. Itoh, and M. Sugo, "Defect reduction effects in GaAs on Si substrates by thermal annealing," Applied physics letters, vol. 53, pp. 2293-2295, 1988.
    [10] S. Hong, T. Yao, B. Kim, S. Yoon, and T. Kim, "Origin of hexagonal-shaped etch pits formed in (0001) GaN films," Applied Physics Letters, vol. 77, pp. 82-84, 2000.
    [11] Y.-H. Yeh, K.-M. Chen, Y.-H. Wu, Y.-C. Hsu, T.-Y. Yu, and W.-I. Lee, "Hydrogen etching of GaN and its application to produce free-standing GaN thick films," Journal of Crystal Growth, vol. 333, pp. 16-19, 2011.
    [12] H.-C. Hsu, Y.-K. Su, S.-J. Huang, S.-H. Cheng, and C.-Y. Cheng, "Improvement of a-plane GaN crystalline quality by overgrowth of in situ etched GaN template," Journal of Crystal Growth, vol. 315, pp. 192-195, 2011.
    [13] K.-L. Lin, E.-Y. Chang, Y.-L. Hsiao, W.-C. Huang, T.-T. Luong, Y.-Y. Wong, et al., "Effects of Al (x) Ga (1-x) N interlayer for GaN epilayer grown on Si substrate by metal-organic chemical-vapor deposition," Journal of Vacuum Science & Technology B, vol. 28, pp. 473-477, 2010.
    [14] C. Dunn and E. Kogh, "Comparison of dislocation densities of primary and secondary recrystallization grains of Si-Fe," Acta Metallurgica, vol. 5, pp. 548-554, 1957.
    [15] M. Mastro, C. Eddy, D. Gaskill, N. Bassim, J. Casey, A. Rosenberg, et al., "MOCVD growth of thick AlN and AlGaN superlattice structures on Si substrates," Journal of crystal growth, vol. 287, pp. 610-614, 2006.
    [16] E. Arslan, M. K. Ozturk, A. Teke, S. Ozcelik, and E. Ozbay, "Buffer optimization for crack-free GaN epitaxial layers grown on Si (1 1 1) substrate by MOCVD," Journal of Physics D: Applied Physics, vol. 41, p. 155317, 2008.
    [17] T. Kozawa, T. Kachi, H. Kano, H. Nagase, N. Koide, and K. Manabe, "Thermal stress in GaN epitaxial layers grown on sapphire substrates," Journal of applied physics, vol. 77, pp. 4389-4392, 1995.
    [18] G. Cong, Y. Lu, W. Peng, X. Liu, X. Wang, and Z. Wang, "Design of the low-temperature AlN interlayer for GaN grown on Si (111) substrate," Journal of crystal growth, vol. 276, pp. 381-388, 2005.
    [19] J. Zhang, D. Zhao, J. Wang, Y. Wang, J. Chen, J. Liu, et al., "The influence of AlN buffer layer thickness on the properties of GaN epilayer," Journal of crystal growth, vol. 268, pp. 24-29, 2004.
    [20] G. Parish, S. Keller, S. Denbaars, and U. Mishra, "SIMS investigations into the effect of growth conditions on residual impurity and silicon incorporation in GaN and AlxGa1− xN," Journal of Electronic Materials, vol. 29, pp. 15-20, 2000.
    [21] C. Zhou, Q. Jiang, S. Huang, and K. J. Chen, "Vertical leakage/breakdown mechanisms in AlGaN/GaN-on-Si devices," Electron Device Letters, IEEE, vol. 33, pp. 1132-1134, 2012.

    [1] Y.-F. Wu, D. Kapolnek, J. P. Ibbetson, P. Parikh, B. P. Keller, and U. K. Mishra, “Very-high power density AlGaN/GaN HEMTs,” Electron Devices, IEEE Transactions on, vol. 48, no. 3, pp. 586-590, 2001.
    [2] C. Wang, S. J. Cho, W. S. Lee, and N. Y. Kim, “A novel method for the fabrication of AlGaN/GaN HEMTs on Si (111) substrates,” The International Journal of Advanced Manufacturing Technology, vol. 67, no. 5-8, pp. 1491-1500, 2013.
    [3] H. Saito, Y. Takada, M. Kuraguchi, M. Yumoto, and K. Tsuda, “Over 550 V breakdown voltage of InAlN/GaN HEMT on Si,” physica status solidi (c), vol. 10, no. 5, pp. 824-826, 2013.
    [4] W. Ahn, O. Seok, S. M. Song, M.-K. Han, and M.-W. Ha, “High-performance AlGaN/GaN High-electron-mobility transistors employing H 2 O annealing,” Journal of Crystal Growth, vol. 378, pp. 600-603, 2013.
    [5] G. Cabello, L. Lillo, C. Caro, M. Soto-Arriaza, B. Chornik, and G. Buono-Core, “Evaluation on the optical properties of Ga 2 O 3− x thin films co-doped with Tb 3+ and transition metals (Mn 2+, Cr 3+) prepared by a photochemical route,” Ceramics International, vol. 39, no. 3, pp. 2443-2450, 2013.
    [6] M. Hellwig, K. Xu, D. Barreca, A. Gasparotto, M. Winter, E. Tondello, R. A. Fischer, and A. Devi, “Novel gallium complexes with malonic diester anions as molecular precursors for the MOCVD of Ga2O3 thin films,” European Journal of Inorganic Chemistry, vol. 2009, no. 8, pp. 1110-1117, 2009.
    [7] A. Trinchi, S. Kaciulis, L. Pandolfi, M. Ghantasala, Y. Li, W. Wlodarski, S. Viticoli, E. Comini, and G. Sberveglieri, “Characterization of Ga 2 O 3 based MRISiC hydrogen gas sensors,” Sensors and Actuators B: Chemical, vol. 103, no. 1, pp. 129-135, 2004.
    [8] J.-C. Dupin, D. Gonbeau, P. Vinatier, and A. Levasseur, “Systematic XPS studies of metal oxides, hydroxides and peroxides,” Physical Chemistry Chemical Physics, vol. 2, no. 6, pp. 1319-1324, 2000.
    [9] H. Perron, J. Vandenborre, C. Domain, R. Drot, J. Roques, E. Simoni, J.-J. Ehrhardt, and H. Catalette, “Combined investigation of water sorption on TiO 2 rutile (110) single crystal face: XPS vs. periodic DFT,” Surface Science, vol. 601, no. 2, pp. 518-527, 2007.
    [10] S. Arulkumaran, T. Egawa, H. Ishikawa, T. Jimbo, and Y. Sano, “Surface passivation effects on AlGaN/GaN high-electron-mobility transistors with SiO2, Si3N4, and silicon oxynitride,” Applied physics letters, vol. 84, no. 4, pp. 613-615, 2004.
    [11] R. Chu, Z. Chen, S. P. DenBaars, and U. K. Mishra, “V-gate GaN HEMTs with engineered buffer for normally off operation,” Electron Device Letters, IEEE, vol. 29, no. 11, pp. 1184-1186, 2008.
    [12] T. Oka, and T. Nozawa, “AlGaN/GaN recessed MIS-gate HFET with high-threshold-voltage normally-off operation for power electronics applications,” Electron Device Letters, IEEE, vol. 29, no. 7, pp. 668-670, 2008.
    [13] K. Ota, K. Endo, Y. Okamoto, Y. Ando, H. Miyamoto, and H. Shimawaki, "A normally-off GaN FET with high threshold voltage uniformity using a novel piezo neutralization technique." pp. 1-4.
    [14] W. Saito, Y. Takada, M. Kuraguchi, K. Tsuda, and I. Omura, “Recessed-gate structure approach toward normally off high-voltage AlGaN/GaN HEMT for power electronics applications,” Electron Devices, IEEE Transactions on, vol. 53, no. 2, pp. 356-362, 2006.
    [15] Z. Xu, J. Wang, Y. Liu, J. Cai, J. Liu, M. Wang, M. Yu, B. Xie, W. Wu, and X. Ma, “Fabrication of normally off AlGaN/GaN MOSFET using a self-terminating gate recess etching technique,” Electron Device Letters, IEEE, vol. 34, no. 7, pp. 855-857, 2013.
    [16] I. Hwang, J. Kim, H. S. Choi, H. Choi, J. Lee, K. Y. Kim, J.-B. Park, J. C. Lee, J. Ha, and J. Oh, “p-GaN gate HEMTs with tungsten gate metal for high threshold voltage and low gate current,” Electron Device Letters, IEEE, vol. 34, no. 2, pp. 202-204, 2013.
    [17] T. Fujii, S. Nakamura, K. Mizuno, R. Nega, M. Iwaya, S. Kamiyama, H. Amano, and I. Akasaki, “High drain current and low on resistance normally‐off‐mode AlGaN/GaN junction HFETs with ap‐type GaN gate contact,” physica status solidi (c), vol. 5, no. 6, pp. 1906-1909, 2008.
    [18] I. Hwang, J. Oh, H. S. Choi, J. Kim, H. Choi, J. Kim, S. Chong, J. Shin, and U.-I. Chung, “Source-Connected p-GaN Gate HEMTs for Increased Threshold Voltage,” Electron Device Letters, IEEE, vol. 34, no. 5, pp. 605-607, 2013.
    [19] O. Hilt, A. Knauer, F. Brunner, E. Bahat-Treidel, and J. Würfl, "Normally-off AlGaN/GaN HFET with p-type Ga Gate and AlGaN buffer." pp. 347-350.
    [20] S. Hamady, F. Morancho, B. Beydoun, P. Austin, and M. Gavelle, "Scalable normally-off MIS-HEMT using Fluorine implantation below the channel." pp. 124-127.
    [21] H. Chen, M. Wang, and K. J. Chen, “Enhancement-mode AlGaN/GaN HEMTs fabricated by standard fluorine ion implantation with a Si3N4 energy-absorbing layer,” Electrochemical and Solid-State Letters, vol. 14, no. 6, pp. H229-H231, 2011.
    [22] Z. Tang, Q. Jiang, Y. Lu, S. Huang, S. Yang, X. Tang, and K. J. Chen, “600-V Normally Off/AlGaN/GaN MIS-HEMT With Large Gate Swing and Low Current Collapse,” Electron Device Letters, IEEE, vol. 34, no. 11, pp. 1373-1375, 2013.
    [23] Q. Wang, K. Tamai, T. Miyashita, S.-i. Motoyama, D. Wang, J.-P. Ao, and Y. Ohno, “Influence of dry recess process on enhancement-mode GaN metal–oxide–semiconductor field-effect transistors,” Japanese Journal of Applied Physics, vol. 52, no. 1S, pp. 01AG02, 2013.

    Bibliography-Chapter 4
    [1] Y. Kawaguchi, Y. Honda, H. Matsushima, M. Yamaguchi, K. Hiramatsu, and N. Sawaki, “Selective Area Growth of GaN on Si Substrate Using SiO 2 Mask by Metalorganic Vapor Phase Epitaxy,” Japanese journal of applied physics, vol. 37, no. 8B, pp. L966, 1998.
    [2] C.-H. Chen, C.-M. Yeh, J. Hwang, T.-L. Tsai, C.-H. Chiang, C.-S. Chang, and T.-P. Chen, “Band gap shift in the GaN/AlN multilayers on the mesh-patterned Si (111),” Applied physics letters, vol. 88, no. 16, pp. 1912, 2006.
    [3] Y. Honda, Y. Kuroiwa, M. Yamaguchi, and N. Sawaki, “Growth of GaN free from cracks on a (111) Si substrate by selective metalorganic vapor-phase epitaxy,” Applied physics letters, vol. 80, no. 2, pp. 222-224, 2002.
    [4] Y. Honda, Y. Kuroiwa, M. Yamaguchi, and N. Sawaki, “Growth of a GaN crystal free from cracks on a (111) Si substrate by selective MOVPE,” Journal of crystal growth, vol. 242, no. 1, pp. 77-81, 2002.
    [5] Y. Kawaguchi, Y. Honda, Y. Yamaguchi, N. Sawaki, and K. Hiramatsu, “Selective Area Growth of GaN on Stripe‐Patterned (111) Si Substrate by Metalorganic Vapor Phase Epitaxy,” physica status solidi (a), vol. 176, no. 1, pp. 553-556, 1999.
    [6] A. M. Darwish, and H. A. Hung, “Improving thermal reliability of FETs and MMICs,” Device and Materials Reliability, IEEE Transactions on, vol. 11, no. 1, pp. 164-170, 2011.
    [7] A. M. Darwish, H. A. Hung, and A. Ibrahim, “AlGaN/GaN HEMT with distributed gate for channel temperature reduction,” Microwave Theory and Techniques, IEEE Transactions on, vol. 60, no. 4, pp. 1038-1043, 2012.
    [8] K. Hiramatsu, K. Nishiyama, A. Motogaito, H. Miyake, Y. Iyechika, and T. Maeda, “Recent Progress in Selective Area Growth and Epitaxial Lateral Overgrowth of III‐Nitrides: Effects of Reactor Pressure in MOVPE Growth,” physica status solidi (a), vol. 176, no. 1, pp. 535-543, 1999.
    [9] A. Sakai, H. Sunakawa, and A. Usui, “Defect structure in selectively grown GaN films with low threading dislocation density,” Applied Physics Letters, vol. 71, pp. 2259-2261, 1997.
    [10] S. Hong, T. Yao, B. Kim, S. Yoon, and T. Kim, “Origin of hexagonal-shaped etch pits formed in (0001) GaN films,” Applied Physics Letters, vol. 77, no. 1, pp. 82-84, 2000.

    Bibliography-Chapter 5
    [1] D. G. Pelka, and K. Patel, "An overview of LED applications for general illumination." pp. 15-26.
    [2] R. Haitz, and J. Y. Tsao, “Solid‐state lighting:‘The case’10 years after and future prospects,” physica status solidi (a), vol. 208, no. 1, pp. 17-29, 2011.
    [3] H. Gao, F. Yan, Y. Zhang, J. Li, Y. Zeng, and G. Wang, “Fabrication and characterization of GaN‐based LEDs grown on nanopatterned sapphire substrates,” physica status solidi (a), vol. 205, no. 7, pp. 1719-1723, 2008.
    [4] S. Ouardi, G. H. Fecher, C. Felser, J. Hamrle, K. Postava, and J. Pištora, “Transport and optical properties of the gapless Heusler compound PtYSb,” Applied Physics Letters, vol. 99, no. 21, pp. 211904, 2011.
    [5] Y. Kim, H. Ruh, Y. Noh, M. Kim, and J. Oh, “Microstructural properties and dislocation evolution on a GaN grown on patterned sapphire substrate: A transmission electron microscopy study,” Journal of Applied Physics, vol. 107, no. 6, pp. 063501, 2010.
    [6] H.-Y. Shin, S. Kwon, Y. Chang, M. Cho, and K. Park, “Reducing dislocation density in GaN films using a cone-shaped patterned sapphire substrate,” Journal of Crystal Growth, vol. 311, no. 17, pp. 4167-4170, 2009.
    [7] T. Kozawa, T. Kachi, H. Kano, H. Nagase, N. Koide, and K. Manabe, “Thermal stress in GaN epitaxial layers grown on sapphire substrates,” Journal of applied physics, vol. 77, no. 9, pp. 4389-4392, 1995.
    [8] Ž. Gačević, A. Das, J. Teubert, Y. Kotsar, P. Kandaswamy, T. Kehagias, T. Koukoula, P. Komninou, and E. Monroy, “Internal quantum efficiency of III-nitride quantum dot superlattices grown by plasma-assisted molecular-beam epitaxy,” Journal of Applied Physics, vol. 109, no. 10, pp. 103501, 2011.
    [9] Ž. Gačević, A. Das, J. Teubert, Y. Kotsar, P. Kandaswamy, T. Kehagias, T. Koukoula, P. Komninou, and E. Monroy, “Internal quantum efficiency of III-nitride quantum dot superlattices grown by plasma-assisted molecular-beam epitaxy,” Journal of Applied Physics, vol. 109, no. 10, pp. 103501, 2011.
    [10] H. Gao, F. Yan, Y. Zhang, J. Li, Y. Zeng, and G. Wang, “Fabrication and characterization of GaN‐based LEDs grown on nanopatterned sapphire substrates,” physica status solidi (a), vol. 205, no. 7, pp. 1719-1723, 2008.
    [11] H. Jönen, U. Rossow, H. Bremers, L. Hoffmann, M. Brendel, A. Dräger, S. Schwaiger, F. Scholz, J. Thalmair, and J. Zweck, “Highly efficient light emission from stacking faults intersecting nonpolar GaInN quantum wells,” Applied Physics Letters, vol. 99, no. 1, pp. 011901, 2011.
    [12] Y. Kim, H. Ruh, Y. Noh, M. Kim, and J. Oh, “Microstructural properties and dislocation evolution on a GaN grown on patterned sapphire substrate: A transmission electron microscopy study,” Journal of Applied Physics, vol. 107, no. 6, pp. 063501, 2010.

    Bibliography-Chapter 6
    [1] T. Tanikawa, T. Hikosaka, Y. Honda, M. Yamaguchi, and N. Sawaki, “Growth of semi‐polar (11‐22) GaN on a (113) Si substrate by selective MOVPE,” physica status solidi (c), vol. 5, no. 9, pp. 2966-2968, 2008.
    [2] T. Murase, T. Tanikawa, Y. Honda, M. Yamaguchi, H. Amano, and N. Sawaki, “Drastic Reduction of Dislocation Density in Semipolar (1122) GaN Stripe Crystal on Si Substrate by Dual Selective Metal–Organic Vapor Phase Epitaxy,” Japanese Journal of Applied Physics, vol. 50, no. 1S1, pp. 01AD04, 2011.
    [3] T. Tanikawa, Y. Kagohashi, Y. Honda, M. Yamaguchi, and N. Sawaki, “Reduction of dislocations in a (112¯ 2) GaN grown by selective MOVPE on (113) Si,” Journal of Crystal Growth, vol. 311, no. 10, pp. 2879-2882, 2009.

    下載圖示 校內:2025-07-01公開
    校外:2025-07-01公開
    QR CODE