簡易檢索 / 詳目顯示

研究生: 莊偉良
Chuang, Wei-Liang
論文名稱: 抽水井流場之數值模擬研究
Numerical Study on Pump Sump Flows
指導教授: 蕭士俊
Hsiao, Shih-Chun
學位類別: 碩士
Master
系所名稱: 工學院 - 水利及海洋工程學系
Department of Hydraulic & Ocean Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 英文
論文頁數: 134
中文關鍵詞: 抽水井鐘形吸入口大渦紊流模式
外文關鍵詞: pump sump, suction bell, Large Eddy Simulation
相關次數: 點閱:108下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 大型抽水井廣泛應用於電廠冷卻水系統、污水處理廠及防洪抽水站等,抽水井流場是否均勻且穩定為評估泵之效率及機件壽命之主要關鍵因素。過去研究以實驗探討物理模型為主,然而隨著電腦計算能力提升,三維數值模式近年來廣泛地應用於模擬抽水井模型之流場及探討其產生渦流之機制,模擬結果不僅展現一定之準確度及可靠性,相較於實驗中觀察易受限於量測方式,模擬結果可呈現模型中任一處之流場。對於評估不同形式之改善方案時,數值模擬可大量節省建構實驗模型及操作之成本。

    本研究求解不可壓縮流之三維Navier-Stokes方程式及大渦紊流模式,以有限體積法離散結構及非結構之混合網格,固體邊界使用不可滑移邊界條件,而入流及出流皆給定均勻流流況。模式驗證部分,引用兩種不同型式之抽水井模型的實驗:林(2004)及Ansar等人(2001)。比較結果顯示,本模式模擬之速度剖面及流場分佈皆與實驗結果相當一致,同時不受過去僅能將具複雜形狀之鐘形吸入口簡化成簡單圓柱管的限制,具更廣泛之應用性。除此之外,Ansar等人(2002)以非黏性流模擬具橫向漸進流之抽水井流場,其模擬結果與本研究比較發現,包含主渠道之大計算域與給定已知速度剖面而取代主渠道之小計算域相比,更能模擬符合實驗量測之細部結果。

    本研究進一步模擬林(2004)之抽水井模型探討吸入管內之流況,並額外考慮三種不同之分流裝置。由管內流之垂直速度分佈中發現,在鐘型吸入口內並無逆向之垂直流速,而通過吸入口喉部後,於管壁附近形成逆向流之區域。在管內渦度分佈可得知管中心附近存在一組對稱之強烈渦旋。另外在實驗上,吸入口喉部之旋轉角為評估抽水效益之主要參數,而本研究於此嘗試以渦度計算之環流量推估此參數並與實驗值比較及討論。

    Large-scale hydraulic pump sumps are widely used in cooling system of power-generation plants, flooding control station, and sewage-disposal plants. It is crucial to evaluate the uniformity and stability of the pump-sump flow which has significant influence on the pump performance. For this problem, experimental approach is mainly applied in assessing such problem for many years. However, with the rapid development of the computer capability, three-dimensional numerical modeling becomes an alternative to simulate the pump-sump flows and understand the mechanism of the vortex formation. In contrast to the limitation caused by the measuring method, numerical modeling can perform the flow field anywhere in the intake model. Moreover, if several sets of modified setups are concerned, numerical modeling can reduce a great number of costs in construction and operation for experiment.

    In this study, three-dimensional incompressible Navier-Stokes equation is solved, and the turbulent fluctuation is filtered and modeled by Large Eddy Simulation model. The momentum equation is discretized by Finite Volume Method in hybrid structured and unstructured grids. The solid wall is treated as no-slip condition. The uniform flow condition is employed at inflow and outflow surfaces. In this thesis, the validation on numerical model will be performed in two distinct intake models. Two experiments are cited: Lin (2004) and Ansar et al. (2001). For the comparisons in the approaching flow, including velocity profiles and flow patterns, the simulation results well agree with both experiments. Meanwhile, the simulation consisting of a complicated suction bell is made in contrast to consider it as simple circular cylinder in previous study. Furthermore, instead of replacing the main channel with known velocity profile done by Ansar et al. (2002) who solved the inviscid solution, present study considering the main channel can capture further subtle phenomena.

    In case study, the flows in the intake pipe are numerically investigated for various flowrates and modified setups. As for vertical velocity distribution, reverse flow occurs in the region above the throat, but no negative vertical velocity appears in the suction bell. The vorticity distribution indicates that a pair of strong, nearly symmetric swirl exists around the pipe center. Since swirl angle is widely used to evaluate the pump performance in experiment, the approach with numerical results is performed and discuss in this thesis.

    摘 要 I ABSTRACT III 誌 謝 V Contents VI List of Tables IX List of Figures X List of Symbols XVII Chapter 1 Introduction 1 1-1 Motivation 1 1-2 Literature Review 5 1-2-1 Review of Pump-Sump Flow Problems 6 1-2-2 Review of Experimental Studies 7 1-2-3 Review of Numerical Studies 8 1-2-4 Review of Design Criterion 11 1-3 Scope of Present Study 14 Chapter 2 Methodology 15 2-1 Numerical Model 15 2-2 Governing Equations 16 2-3 Large Eddy Simulation Model 17 2-4 Finite Volume Method 20 2-5 Volume of Fluid 22 2-6 Volume Tracking Algorithm 24 2-7 Projection Method 25 2-8 Computational Cycle 27 2-9 Implementation on Boundary Conditions 28 2-9-1 No-Slip Boundary Condition 28 2-9-2 Inflow and Outflow Boundary Condition 28 2-10 Numerical Stability 28 2-11 Mesh Generation 30 Chapter 3 Model Validation I: A Sump Model with Straight Approaching low 36 3-1 Introduction 36 3-2 Setup Description 37 3-3 Velocity Profiles 43 3-4 Flow Patterns 45 3-5 Vorticity Contour 48 Chapter 4 Model Validation II: Intake Model with Cross Approaching Flow 69 4-1 Introduction 69 4-2 Setup of Present Study 70 4-3 Streamwise Velocity Distribution 76 4-4 Flow Patterns 77 Chapter 5 Case Study on Flows in the Intake Pipe 84 5-1 Layout of Modified SetupsU 85 5-2 Numerical Setup 87 5-3 Vertical Velocity Distribution 88 5-3-1 Comparisons between Different Discharges 88 5-3-2 Comparisons between Different Modified Setups 90 5-4 Fluid Dynamics in the Intake Pipe 100 5-4-1 Vorticity Contour 100 5-4-2 Circulation Distribution 103 5-4-3 Swirl Angle Approach 104 Chapter 6 Conclusions and Future Works 117 References 118 Appendix A 124 Appendix B 129

    1. Ansar, M., (1997). Experimental and Theoretical Studies of Pump-Approach Flow Distributions at Water Intakes. Ph.D Thesis, University of Iowa, Iowa, USA.
    2. Ansar, M. and Nakato, T., (2001). Experimental Study of 3D Pump-Intake Flow with and without Cross Flow. J. Hydr. Engrg., ASCE, 127(10), 825-834.
    3. Ansar, M., Nakato, T. and Constantinescu S. G., (2002). Numerical Simulation of Inviscid Three-Dimensional Flows at Single- and Dual-Pump Intakes. J. Hydr. Res., 40(4), 461-470.
    4. Arboleda, G. and El-Fadel, M., (1996). Effects of Approach Flow Conditions on Pump Sump Design. J. Hydr. Engrg., ASCE, 122(9), 489-494.
    5. Barth, T. J., (1995). Aspects of Unstructured Grids and Finite-Volume Solvers for Euler and Navier Stokes Equations, VKI/NASA/AGARD Special Course on Unsructured Grid Methods for Advection Dominated Flows, AGARD Publication R-787.
    6. Cabot, W. and Moin, P., (2000). Approximate Wall Boundary Conditions in the Large-Eddy Simulation of High Reynolds Number Flow. Flow, Turbulence and Combustion, 63, 269-291.
    7. Chen H.-X. and Guo J.-H, (2007). Numerical Simulation of 3-D Turbulent Flow in the Multi-Intakes Sump of the Pump Station. J. Hydrodynamics, 19(1), 42-47.
    8. Chorin, A. J., (1968). Numerical Solution of the Navier-Stokes Equations. Math. Comp., 22, 745-762.
    9. Chorin, A. J., (1969). On the Convergence of Discrete Approximations of the Navier-Stokes Equations. Math. Comp., 23, 341-353.
    10. Constantinescu, S. G. and Patel, V. C., (1998). Numerical Model for Simulation of Pump-Intake Flow and Vortices. J. Hydr. Engrg., ASCE, 124(2), 123-134.
    11. Constantinescu, S. G. and Patel, V. C., (2000). Role of Turbulence Model in Prediction of Pump-bay Vortices. J. Hydr. Engrg., ASCE, 126(5), 387-392.
    12. Deardorff, J. W., (1970). A Numerical Study of Three-Dimensional Turbulent Channel Flow at Large Reynolds Number. J. Fluid Mech., 41(2), 453-480.
    13. De Siervi, F., Viguier, H. C., Greitzer, E.M., and Tan C.S., (1982). Mechanisms of Inlet-Vortex Formation. J. Fluid Mech., 124, 173-207.
    14. Gulliver, J. S. and Rindel, A. J., (1987). Weak Vortices at Vertical Intakes. J. Hydr. Engrg., ASCE, 113(9), 1101-1116.
    15. Hecker, G. E., (1987). Fundamentals of Vortex Inlet Flow. IAHR Hydraulic Structures Design Manual on Swirl Flow Problems at Intakes, edited by J.Knauss, Balkema/Rotterdam, 13-38.
    16. Hirt, C. W. and Nichols, B. D., (1981). Volume of Fluid (VOF) Method for the Dynamics of Free Boundaries. J. Comp. Phys., 39, 201-225.
    17. Hwang, K.-S. and Yang, C.-H., (2003). Hydraulics Model Testing of Circulating-Water Pump Sump in Shen-Ho Power Plant (in Chinese). Research Report, Taiwan Hydraulics Laboratory, No. 293.
    18. Hydraulic Institute Standards, (1998). Centrifugal, Rotary and Reciprocating Pumps. 14 th. Ed., HIS, Cleveland, Ohio.
    19. Jain, A. K., Raju, K. G. R. and Garde, R.J., (1978). Vortex Formation at Vertical Pipe Intakes. J. Hydr. Div., ASCE, 104(10), 1429-1445.
    20. Kolmogorov, A. N., (1962). A Refinement of Previous Hypothesis Concerning the Local Structure of Turbulence in a Viscous Incompressible Fluid at High Reynolds Number. J. Fluid Mech., 13, 82-85.
    21. Li, S., Silva, J. M., Lai, Y., Weber, L. and Patel, V. C., (2006). Three-Dimensional Simulation of Flows in Practical Water-Pump Intakes. J. Hydroinformatics, 8(2), 111-124.
    22. Li, S., Lai, Y., Weber, L., Silva, J. M. and Patel, V. C., (2004). Validation of a 3D Numerical Model for Water Pump-Intakes. J. Hydr. Res., 42(3), 282-292.
    23. Lin C.-P., (2004). On the Influence of an Upstream Sluice Gate to Pump Sump Flows in Shen-Ho Power Plant (in Chinese). Master Thesis, National Cheng Kung University, Tainan, Taiwan.
    24. Padmanabhan, M. and Hecker, G. E., (1984). Scales Effects in Pump Sump Models. J. Hydr. Engrg., ASCE, 110(11), 1540-1556.
    25. Prosser, M. J., (1977). The Hydraulic Design of Pump Sumps and Intakes. British Hydromech. Res. Assn., and Constr. Industry Res. and Info. Assn., Cranfield, England.
    26. Quick, M. C., (1970). Efficiency of Air-Entraining Vortex Formulation. J. Hydr. Div., ASCE, 96(7), 1403-1416.
    27. Rajendran V. P., Constantinescu G.S. Patel V.C. (1999). Experimental Validation of Numerical Model of Flow in Pump-Intake Bays. J. Hydr. Engrg., ASCE, 125(11), 1119-1125.
    28. Rider, W. J. and Kothe, D. B., (1998). Reconstructing Volume Tracking. J. Comp. Phys., 141, 112-152.
    29. Roberge, J. A., (1999). Use of Computational Fluid Dynamics (CFD) to Model Flow at Pump Intakes. Master Thesis, Worcester Polytechnic Institute, Worcester, USA.
    30. Shukla S. and Kshirsagar J.T., (2008). Numerical Prediction of Air Entrainment in Pump Intake. The proceedings of the 24 International Pump Users Symposium, 29-33.
    31. Skerlavaj, A., Vehar, F., Pavlin, R. and Lipej, A., (2009). A Hydraulic Study of Cooling Water Intake Structure. 3rd IAHR International Meeting of the Workgroup on Cavitation and Dynamic Problems in Hydraulic Machinery and Systems, Brno, Czech Republic.
    32. Smagorinsky, J., (1963). General Circulation Experiments with the Primitive Equations: I. The Basic Equations, Mon. Weather Rev., 91, 99-164.
    33. Sweeney, C. E., Elder, R. A., and Hay, D., (1982). Pump Sump Design Experience: Summary. J. Hydr. Engrg., ASCE, 108(3), 361-377.
    34. Tokyay, T. E. and Constantinescu, S. G., (2005). LES and RANS Simulations of Flow in a Realistic Pump-intake. World Water and Environmental Resources Congress, EWRI, Alaska, USA.
    35. Tokyay, T. E. and Constantinescu, S. G., (2006). Investigation of Coherent Structures in Pump Intake Flows by Large Eddy Simulation Model. International Conference on Civil and Environmental Engineering, ICCEE, Hiroshima, Japan.
    36. Tokyay, T. E. and Constantinescu, S. G., (2006). Validation of a Large-Eddy Simulation Model to Simulate Flow in Pump Intakes of Realistic Geometry. J. Hydr. Engrg., ASCE, 132(12), 1303-1315.
    37. Tullis, J. P., (1979). Modeling in Design of Pumping Pits. J. Hydr. Div., ASCE, 105(9), 1053-1063.
    38. Wada, A. (2006) Flow Structure Around the Intake of a Vertical Pump. J. Thermal Science, 15(2), 121-125.
    39. Wu, T.-R., (2004). A Numerical Study of Three-dimensional Breaking Waves and Turbulence Effects. Ph.D Thesis, Cornell University, Ithaca, USA.
    40. Wu Y.-L., Li Y., and Li X.-M., (2000). PIV Experiments on Flow in a Model Pump Suction Sump. Research Rep., Thermal Engineering Dept., Tsinghua University, China.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE