簡易檢索 / 詳目顯示

研究生: 黃聖弼
Huang, Sheng-Pi
論文名稱: 居家服務型機器人連桿手指與模糊腰部旋轉控制之設計與實現
Design and Implementation of Linkage Fingers and Fuzzy Waist Angle Control for Home Service Robots
指導教授: 李祖聖
Li, Tzuu-Hseng
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 英文
論文頁數: 70
中文關鍵詞: 模糊控制居家服務型機器人連桿手指
外文關鍵詞: Fuzzy Control, Home Service Robot, Linkage Fingers
相關次數: 點閱:156下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文主要在設計居家服務型機器人的連桿手指及實現腰部旋轉角度之模糊控制。本文提出居家服務型機器人的硬體架構,其中機器人的感測器包含Kinect、麥克風及雷射測距儀並藉由筆記型電腦來連接感測器與六個自由度的機器手臂、兩個自由度的頭部、旋轉腰部以及四輪轉動及四輪驅動的移動平台。為了增加機器人手軸的力量和減少機器人肩膀的負荷,本研究各增加一顆馬達以及齒輪模組。此外,本文設計連桿結構之手指,讓機器人能增加抓取物品的大小。同時為了增加機器人的抓取範圍,本文提出以模糊法則來控制腰部轉動角度,使機器人能抓取更遠物件且機器手臂之姿態保持更好。最後,將所提模糊控制策略應用於居家服務型機器人,並透過實驗結果證明其可行性。

    The thesis aims to design and integrate linkage fingers and fuzzy waist angle control system into the home service robot. The hardware architecture of the home service robot, named May, is proposed. It consists of several sensory subsystems such as Kinect, microphone, and laser range finder. A notebook is adopted as the central control unit to process all the data and signals of the sensors, 6-DOF arms, 2-DOF neck, the rotatable waist, and the four-wheel independent steering and driving mobile platform. In order to increase the power of the robotic elbows and decrease the load of the robotic shoulder, one more motor and gear module are introduced. The fingers designed by the linkage structure aim to increase the robot grasping size of object. Moreover, a fuzzy controller is presented to determine a more suitable angle of the waist for grasping the object and getting a better arm posture. Finally, the proposed fuzzy controller is implemented in the home service robot, May. All the experimental results demonstrate the feasibility of the developed schemes.

    Contents Abstract I Acknowledgements III Contents IV List of Figures VI List of Tables VIII Chapter 1. Introduction 1 1.1 Motivation 1 1.2 Thesis Organization 3 Chapter 2. System Architecture of the home service robot 5 2.1 Introduction 5 2.2 Integrated Architecture of Home Service Robot 6 2.3 Hardware Architecture of the Home Service Robot 8 2.3.1 Central Operation Unit 9 2.3.2 Vision Module 10 2.3.3 Servo Motor Module 13 2.3.4 Laser Measurement System 16 2.3.5 Power System 17 2.3.6 HMI 18 2.4 Mechanism Design of the Home Service Robot 22 2.4.1 Head 23 2.4.2 Waist 23 2.4.3 Arm 24 2.4.4 Hand 25 2.4.5 Mobile Platform 26 2.5 Summary 27 Chapter 3. coodinate Transformation and kinematics Analysis for robotic 28 3.1 Introduction 28 3.2 Coordinate Transformation 29 3.3 Forward Kinematics of Robotic Arm 33 3.4 Inverse Kinematic of Robotic Arm 37 3.5 Summary 39 Chapter 4. Fuzzy control applications for robotic arm 40 4.1 Introduction 40 4.2 Fuzzy Waist Control for Distance Correction 41 4.3 Fuzzy Waist Control for Angle Correction 45 4.4 Fuzzy Waist Control 49 4.5 The Application of Competition 52 4.5.1 Introduction 52 4.5.2 Focus 54 4.5.3 Tasks 54 4.5.4 Strategy System for Cocktail Party 58 4.6 Summary 59 Chapter 5. Experimental Results 60 5.1 Introduction 60 5.2 Experimental Results of the Home Service Robot 61 5.3 Summary 65 Chapter 6. Conclusion and Future work 66 6.1 Conclusion 66 6.2 Future Work 67 Reference 68 List of Figures 2.1 The hardware relation of home service robot 6 2.2 The overall system architecture of the robot 8 2.3 The hardware architecture of the home service robot 9 2.4 The photo of notebook 10 2.5 The photo of kinect for windows 11 2.6 Skeleton image from kinect 12 2.7 RGB image from Kinect 13 2.8 The photo of servo motors 14 2.9 The photo of usb2dynamixel device 16 2.10 The photo of LMS100 16 2.11 The architecture of power system 18 2.12 The HMI of robot 19 2.13 The HMI of motor state 20 2.14 The HMI of arms’ motion 21 2.15 The HMI of robotic fingers 21 2.16 The HMI of motion planning 22 2.17 The mechanism of robotic head 23 2.18 The mechanism of robotic waist 24 2.19 The mechanism of the arm 25 2.20 The mechanism of the fingers 26 2.21 The simulation and the photo of mobile platform 26 3.1 The home service robot with 1-dof waist and 6-dof arms 29 3.2 Vision coordinate of the object 30 3.3 The definition of coordinate system of 2-dof robotic neck 31 3.4 The relationship between 2 joints defined by D-H convention 33 3.5 The robotic arm in solidwork 36 4.1 The top view of the waist rotation 42 4.2 The flowchart of the fuzzy waist controller for distance correction 43 4.3 The membership function of fuzzy waist control for distance correction 44 4.4 The situation of the false grasping 46 4.5 The range of angle 46 4.6 The flowchart of the fuzzy controller for angle correction 47 4.7 The membership function of fuzzy waist control for angle correction 48 4.8 The structure of fuzzy waist control 50 4.9 The system flowchart of fuzzy waist control 51 4.10 The flowchart of grasping the object 52 4.11 The flowchart of grasp strategy (cocktail party) 58 5.1 The object in the left region 61 5.2 The object in the right region 63 5.3 Cocktail party 64   List of Tables 2.1 The specification of notebook 10 2.2 The specification for Kinect 12 2.3 The specification of servo motor 15 2.4 The specification of LMS 100 17 3.1 The specification of D-H parameters 35 3.2 The angular functions of six joints 38 3.3 The parameters of inverse kinematic 38 4.1 The fuzzy rule table of fuzzy waist control for distance correction 45 4.2 The range of θref 48 4.3 The rule table of fuzzy waist control for angle correction 49 4.4 The classification of objects 54 4.5 The score sheet of the competition 57

    Reference
    [1] Z. Xue, S. Ruehl, A. Hermann, T. Kerscher, and R. Dillmann, “Anautonomous ice-cream serving robot.” in Proc. of the IEEE Int. Conf. on Robotics and Automation (ICRA), Shanghai, China, 2011, pp. 3451–3452.
    [2] B. Bauml, F. Schmidt, T. Wimbock, O. Birbach, A. Dietrich, M. Fuchs, W. Friedl, U. Frese, C. Borst, M. Grebenstein, O. Eiberger, and G. Hirzinger, “Catching flying balls and preparing coffee: Humanoid Rollin’Justin performs dynamic and sensitive tasks,” in Proc. of the IEEE Int. Conf. on Robotics and Automation (ICRA), Shanghai, China, 2011,pp. 3443–3444.
    [3] J. Stuckler, D. Holz and S. Behnke, “RobotCup@Home: Demonstrating Everyday Manipulation Skills in RoboCup@Home,” IEEE Robotics and Automation Magazine, Vol. 19, No. 2, 2012, pp. 34-42.
    [4] H. Iwata and S. Sugano, “Design of Human Symbiotic Robot TWENDY-ONE,” in Proc. of 2009 IEEE International Conference on Robotics and Automation, Kobe, Japan, 2009, pp. 580-586.
    [5] A. T. Miller, Graspit!: A versatile simulator for robotic grasping, Ph.D. Dissertation, Dept. Comput. Sci., Columbia Univ., 2001.
    [6] J. Stuckler, R. Steffens, D. Holz, and S. Behnke, “Real-time 3D perception and efficient grasp planning for everyday manipulation tasks,” in Proc. of the European Conf. on Mobile Robots (ECMR), Orebro, Sweden, 2011, pp. 177–182.
    [7] N. Vahrenkamp, T. Asfour , R. Dillmann, “Simultaneous Grasp and Motion Planning: Humanoid Robot ARMAR-III,” IEEE Robotics and Automation Magazine, Vol. 19, No. 2, 2012, pp. 43-57.
    [8] N. Vahrenkamp, D. Berenson, T. Asfour, J. Kuffner, and R. Dillmann, “Humanoid motion planning for dual-arm manipulation and re-graspingtasks,” in Proc. IEEE Int. Conf. Intelligent Robots and Systems (IROS), St.Louis, Oct. 2009, pp. 2464–2470.
    [9] Kinect for Windows Available:
    http://www.microsoft.com/en-us/kinectforwindows/
    [10] ROBOTIS. Available:
    http://www.robotis.com/xe/
    [11] SICK. Available:
    http://www.sick.com/group/EN/home/products/product_news/laser_measurement_systems/Pages/lms100.aspx
    [12] R. Leenen, J.J. Ploeg, H.H. Nijimeijer, L. Moreau, and F. Veldpaus, Motion control design for a 4ws and 4wd overactuated vehicle, Master Thesis, Department Mechanical Engineering Dynamics and Control Technology Group, Eindhoven University of Technology, Eindhoven, January 2004.
    [13] Wikipedia for Denavit-Hartenberg convention Available: http://en.wikipedia.org/wiki/Denavit%E2%80%93Hartenberg_parameters
    [14] Fuzzy control system Available:
    http://en.wikipedia.org/wiki/Fuzzy_control_system
    [15] H. A. Malki, D. Misir, D. Feigenspan, and G. Chen, “Fuzzy PID Control of a Flexiblc Joint Robot Arm with Uncertainties from Time-Varying Loads,” IEEE Transaction on Control Systems Technology, Vol. 5, No. J, MAY 1997, pp. 371-377.
    [16] M. O. Efe, “Fractional fuzzy adaptive sliding-mode control of a 2-DOF direct-drive robot arm,” IEEE Trans. Syst., Man, Cybern. B, Cybern., Vol. 38, No. 6, pp. 1561–1570, Dec. 2008.
    [17] C-H. Yeh, Design and Implement of Grasping Posture and Fuzzy Grip Force Control Scheme for Home Service Robot, Master Thesis, National Cheng Kung University, July, 2012.
    [18] C-F. Huang, Design and Implement of Object Grasping and Control Strategy for Home Service Robot with Rotatable Waist, Master Thesis, National Cheng Kung University, June, 2013
    [19] RoboCup@Home 2013 rule book. Available:
    https://docs.google.com/viewer?a=v&pid=sites&srcid=cm9ib2N1cGF0aG9tZS5vcmd8cm9ib2N1cC1ob21lfGd4OjM5NWZlY2I0ZjFlZGM1ZmE
    [20] D-Hand. Available:
    http://www.j-d.co.jp/dhand/dhand_top.html
    [21] H. Lee, Implementation of Real-time Object Recognition System by Integrating SURF and BRISK for Home-Service Robot, Master Thesis, National Cheng Kung University, June , 2013

    下載圖示 校內:2019-08-28公開
    校外:2019-08-28公開
    QR CODE