簡易檢索 / 詳目顯示

研究生: 白姿慧
Pek, Sylvia Purnomo
論文名稱: 光電化學法產氫用CuxO/TiO2 光陽極之製備及特性研究
Preparation and Characterization of CuxO/TiO2 Photoanodes for Photoelectrochemical Hydrogen Generation
指導教授: 陳慧英
Chen, Huey-Ing
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 英文
論文頁數: 129
外文關鍵詞: copper oxide, cupric oxide, TiO2 nanotubes, photoelectrochemical, water splitting, electrodeposition, incipient wetness impregnation
相關次數: 點閱:100下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • Hydrogen is a clean and renewable green energy source. Hydrogen is also widely considered to be the fuel of future. Over past decades, generation of hydrogen by low cost and environmental friendly ways became a popular and urgent issue for the world. As previously reported, hydrogen produced from photocatalytic or photoelectrochemical (PEC) routes have showed its strongly predominant compatibility for future developments. Titanium dioxide has been generally recognized as one of the most promising material candidate used in photocatalytic and PEC. However, this material, TiO2 was limited in the solar energy utilization due to its wide bandgap (3.2 eV). Therefore, it became great importance to loading/doping metals or other substances into TiO2 in order to enhance the hydrogen production by photocatalytic or photoelectrochemical (PEC) technologies.
    In this work, CuxO/TiO2 nanotubes were prepared and used as photoanodes in PEC splitting of water for hydrogen generation. Experimentally, highly ordered nanotubular TiO2/Ti substrates were firstly synthesized by the anodization technique. The incipient wetness impregnation was then employed to load copper oxides on the surface of TiO2 nanotubes. The effects of preparation conditions including calcination temperature and concentration of impregnation solution on the properties of CuxO nanoparticles such as crystalline structure, particles size distribution and loading amount were investigated. Furthermore, the bandgap and photoactivity of the CuxO/TiO2 photoanodes were charaterized by using reflectance UV/Vis analysis and PEC reaction.
    The experimental results showed that the final product was CuO with tenorite structure. The optimum preparation conditions occured at 0.01 M of initial Cu(NO3)2 concentration with impregnating for three times, and the optimized calcination temperature was 450°C in air. The Cu loading of this sample was determined as 0.6 μmole. In the PEC water spliting by using methanol as the sacrificial agent under xenon lamp illumination (1000W, 100mW/cm2), it was found that the maximum photoconversion efficiency, e.g., 0.48%, could be obtained, and the hydrogen generation rate was at 0.343 μmol/cm2.hr.
    Alternatively, electrodeposition method was in advance employed to deposit CuxO on the TiO2 surface. Effects of deposition variables including copper concentration in the deposition bath, applied voltage and deposition time on the morphology and microstructure of the resulting CuxO/TiO2 nanotubes were investigated. Besides, several alcohol-water mixtures were served as electrolytes for the PEC study. From the experimental results, it revealed that the optimal deposition conditions occured at applied voltage of 1V for 15 s with a 10.45 mM CuSO4 solution. In this case, the maximum photoconversion efficiency was 0.50%, and the hydrogen generation rate was 0.384 μmol/cm2.hr.
    The results concluded that maximum photoconversion efficiencies, as well as hydrogen generation rates, obtained by the two routes in this study were quite close. However, their performances were still far away from the industrial criteria. Many efforts should be paid to find more effective materials for hydrogen generation by PEC water splitting in future.

    Abstract………………………………………….. I Acknowledgement……………………………………. III List of contents……………………………………... IV List of tables………………………………………... VII List of figures………………………………………. VIII Chapter 1 Introduction………………………………… 1 1.1 Hydrogen………………………………... 1 1.2 Hydrogen generation processes……………………. 2 1.2.1 Photoelectrochemical hydrogen production (PEC)…………... 3 1.2.2 PEC reaction with TiO2 photoanode doping by metal oxide….. 3 1.2.3 Hydrogen production from methanol/water decomposition…... 5 1.3 Metal oxide loaded TiO2 photoanodes………………….. 6 1.3.1 Properties and structure……………………... 6 1.3.2 Preparation method……………………….. 9 1.4 Motivation and objectives……………………….. 10 Chapter 2 Theoretical…………………………………... 23 2.1 Anodization method…………………………... 23 2.2 Electrodeposition method……………………….. 25 2.3 Photoelectrochemical cells…..…………………….... 27 2.3.1. Hydrogen generation via photoelectrochemical cell……… 27 2.3.2. Photoconversion efficiency…………………….. 29 2.3.3. Properties of photo-anodes…………………….. 30 Chapter 3 Experimental………………………………... 38 3.1 Chemicals and materials…………………………. 38 3.1.1 Chemicals……………………………. 38 3.1.2 Materials……………………………... 38 3.2 Apparatus and analysis………………………… 38 3.2.1 Instruments…………………………....... 38 3.2.2 Analysis……………………………… 39 3.3 Preparation of CuO/TiO2 photoanode…………………... 40 3.3.1 Pretreatment of Ti substrate……………………. 40 3.3.2 Preparation of TiO2/Ti electrode………………….. 40 3.3.3 Deposition of CuO on TiO2/Ti electrodes…………… 41 3.3.3.1 Incipient wetness impregnation……………… 41 3.3.3.2 Electrodeposition……………………. 41 3.4 Photoelectrochemical water splitting…………………. 41 3.4.1 Design and assembly of PEC reactor……………….. 41 3.4.2 Procedures …………….………………. 42 3.4.3 Hydrogen generation………………………... 42 3.4.4 Efficiency calculation……………………….. 42 Chapter 4 CuxO/TiO2 photoanodes prepared by incipient wetness impregnation…. 48 4.1 Objectives…………………………………. 48 4.2 Characterization……………………………… 48 4.2.1. Crystalline structure……………………….. 48 4.2.2. Bandgap……………………………… 49 4.2.3. Surface morphology……………………….. 49 4.2.4. Amount and distribution of CuO………………….. 50 4.3 PEC performance (I) – Photoanode preparation study…………. 50 4.3.1. Effect of calcination temperature………………….. 51 4.3.2. Effect of concentration of impregnation solution…………. 51 4.4 PEC performance (II) – PEC electrolyte study………………. 52 4.5 Hydrogen generation……………………………. 53 Chapter 5 CuxO/TiO2 photoanodes prepared by electrodeposition …………. 71 5.1 Objectives………………………………….. 71 5.2 Characterization………………………………. 71 5.2.1 Crystalline structure………………………… 71 5.2.2 Bandgap………………………………. 73 5.2.3 Surface morphology………………………... 74 5.2.4 Amount and distribution of CuO…………………... 74 5.3 PEC performance (I) – Photoanode preparation study…………..... 75 5.3.1 Effect of calcination atmosphere………………….. 76 5.3.2 Effect of calcination temperature………………….. 77 5.3.3 Effect of electrolyte concentration……………….... 77 5.3.4 Effect of applied voltage……………………..…. 78 5.3.5 Effect of electrodeposition time………………..….. 79 5.4 PEC performance (II) – PEC electrolyte study……………..…...79 5.4.1 Effect of alcohol nature……………………..…... 79 5.4.2 Effect of methanol concentration………………..… 80 5.5 Photocurrent response…………………………... 81 5.6 Hydrogen generation………………………..…... 81 5.7 Comparison……………………………..…. 82 Chapter 6 Conclusions and suggestion………………………… 120 6.1 Conclusions……………………………….. 120 6.2 Suggestion………………………………… 121 References………………………………………... 122

    1. T. Bak, J. Nowotny, M. Rekas, and C.C. Sorrrell, "Photo-electrochemical hydrogen generation from water using solar energy. Materials-related aspects", Int. J. Hydrog. Energy, 27(10), 991 (2002).
    2. T. Veziroglu, "Dawn of the hydrogen age", International Journal of Hydrogen Energy, 23(12), 1077 (1998).
    3. C. Mitsugi, A. Harumi, and F. Kenzo, "WE-NET: Japanese hydrogen program", International Journal of Hydrogen Energy, 23(3), 159 (1998).
    4. A. Fujishima and K. Honda, “Electrochemical Photolysis of Water at a Semiconductor Electrode", Nature, 37(1), 238 (1972).
    5. J. Nowotny, C.C. Sorrrell, L.R. Sheppard, and T. Bak, "Solar-hydrogen: Environmentally safe fuel for the future", International Journal of Hydrogen Energy, 30(5), 521 (2005).
    6. E. Celik, Z. Gokcen, N.F. Ak Azem, "Processing, characterization and photocatalytic properties of Cu doped TiO2 thin films on glass substrate by sol-gel technique", Materials Science and Engineering: B, 132(3), 258 (2006).
    7. X. Yang, A. Wolcott, G. Wang, et al. “Nitrogen-doped ZnO nanowire arrays for photoelectrochemical water splitting”, Nano Lett. 9(6), 2331-2336 (2009).
    8. Trenczek-Zaj c, M. Radecka and M. Rekas, “Photoelectrochemical properties of Nb-doped titanium dioxide”, Physica B: Physics of Condensed Mater, 399(1), 55-59 (2007).
    9. M. Radecka, M. Wierzbicka, S. Komornicki, et al, “Influence of Cr on photoelectrochemical properties of TiO2 thin films”, Physica B: Condensed Matter, 348(1-4), 160-168 (2004).
    10. M. Radecka, A. Trenczek-Zajac, K. Zakrzewska, et al, “Effect of oxygen nonstoichiometry on photo-electrochemical properties of TiO2-x”, J. of Power Sources 173(2), 816-821 (2007).
    11. M. Radecka, P. Sobas, M. Wierzbicka, et al, “Photoelectrochemical properties of undoped and Ti-doped WO3”, Physica B: Condensed Matter, 364(1-4), 85-92 (2005).
    12. G. Mor, O. Varghese, R. Wilke, et al, “p-Type Cu-Ti-O Nanotube Arrays and Their Use in Self-Biased Heterojunction Photoelectrochemical Diodes for Hydrogen Generation”, Nano Lett, 8(7), 1906-1911 (2008).
    13. Y. Lei, G. Zhao, M. Liu, et al, “Fabrication, Characterization, and Photoelectrocatalytic Application of ZnO Nanorods Grafted on Vertically Aligned TiO2 Nanotubes”, The Journal of Physical Chemistry C, 113, 19067-19076 (2009).
    14. A. Fujishima, and K. Kohayakawa, “Hydrogen production under sunlight with an electrochemical photocell”, J. Electrochem. Soc., 122, 1487-1489 (1975).
    15. M. Radecka, M. Wierzbicka, S. Komornicki and M. Rekas, "Influence of Cr on photoelectrochemical properties of TiO2 thin films." Physica B: Physics of Condensed Matter, 348, 160-168 (2004).
    16. M. Radecka, P. Sobas, M. Wierzbicka and M. Rekas, "Photoelectrochemical properties of undoped and Ti-doped WO3." Physica B: Physics of Condensed Matter, 364, 85-92 (2005).
    17. M. Radecka, A. Trenczek-Zajac, K. Zakrzewska and M. Rekas, "Effect of oxygen nonstoichiometry on photo-electrochemical properties of TiO2- x." J. Power Sources, 173, 816-821 (2007).
    18. Trenczek-Zaj c, A., M. Radecka and M. Rekas, "Photoelectrochemical properties of Nb-doped titanium dioxide." Physica B: Physics of Condensed Matter, 399, 55-59 (2007).
    19. X. Yang, A. Wolcott, G. Wang, A. Sobo, R. Fitzmorris, F. Qian, J. Zhang and Y. Li, "Nitrogen-Doped ZnO Nanowire Arrays for Photoelectrochemical Water Splitting." Nano Lett, 9, 2331-2336 (2009).
    20. O. N. Srivastava, R. K. Karn, and M. Misra, “Semisonductor-septum photoelectrochemical solar cell for hydrogen production”, Int. J. Hydrog. Energy, 25, 495-503 (2000).
    21. J. Akikusa, and S. U. M. Khan, “Photoresponse and AC impedance characterization of n-TiO2 films during hydrogen and oxygen evolution reactions in an electrochemical cell”, Int. J. Hydrog. Energy, 22, 875-882 (1997).
    22. Y. A. Shaban, and S. U. M. Khan, “Surface grooved visible light active carbon modified (CM)-n-TiO2 thin films for efficient photoelectrochemical splitting of water”, Chem. Phys., 339, 73-85 (2007).
    23. Y. Su, S. Chen, X. Quan, H. Zhao and Y. Zhang, "A silicon-doped TiO2 nanotube arrays electrode with enhanced photoelectrocatalytic activity." Appl. Surf. Sci., 255, 2167-2172 (2008).
    24. N. Lu, X. Quan, J. Li, S. Chen, H. Yu and G. Chen, "Fabrication of boron-doped TiO2 nanotube array electrode and investigation of its photoelectrochemical capability." (2007).
    25. S. K. Mohapatra, V. K. Mahajan, and M. Misra, “Double-side illuminated titania nanotubes for high volume hydrogen generation by water splitting”, Nanotechnology, 18, 445705 (2007).
    26. S. K. Mohapatra, M. Misra, V. K. Mahajan, and K. S. Raja, “Design of a highly efficient photoelectrolytic cell for hydrogen generation by water splitting: application of TiO2-xCx nanotubes as a photoanode and Pt/TiO2 nanotubes as a cathode”, J. Phys. Chem. C, 111, 8677-8685 (2007).
    27. Y. Shaban, and S. Khan, "Carbon modified (CM)-n-TiO2 thin films for efficient water splitting to H2 and O2 under xenon lamp light and natural sunlight illuminations." Journal of Solid State Electrochemistry, 13, 1025-1036 (2009).
    28. Y. Lei, G. Zhao, M. Liu, Z. Zhang, X. Tong and T. Cao, "Fabrication, Characterization, and Photoelectrocatalytic Application of ZnO Nanorods Grafted on Vertically Aligned TiO2 Nanotubes." The Journal of Physical Chemistry C, 113, 19067-19076 (2009).
    29. C. Chi, Y. Lee and H. Weng, "A CdS-modified TiO2 nanocrystalline photoanode for efficient hydrogen generation by visible light." Nanotechnology, 19, 125704 (2008).
    30. G. S. Hermann, Y. Gao, T. T. Tran, and J. Osterwalder, “X-ray photoelectron diffraction study of an anatase thin film: TiO2 (001)”, Surf. Sci., 447, 201-211 (2000).
    31. U. Diebold, “The surface science of titanium dioxide”, Surf. Sci. Rep., 48, 53-229 (2003).
    32. A. Hagfeldt, and M. Gratzel, “Light-induced redox reactions in nanocrystalline systems”, Chem. Rev., 95, 49-68 (1995).
    33. T. Sreethawong and S. Yoshikawa, “Comparative investigation on photocatalytic hydrogen evolution over Cu-, Pd-, and Au-loaded mesoporous TiO2 photocatalysts”, Catal. Commun, 6(10), 661-668 (2005).
    34. N. Wu and M. Lee, “Enhanced TiO2 photocatalysis by Cu in hydrogen production from aqueous methanol solution”, Int. J. Hydrogen Energ, 29(15), 1601-1605 (2004).
    35. J. Bandara, C. Udawatta and C. Rajapakse, “Highly stable CuO incorporated TiO2 catalyst for photocatalytic hydrogen production from H2O”, Photoch. Photobio. Sci, 4(11), 857-861 (2005).
    36. H. J. Choi and M. Kang, “Hydrogen production from methanol/water decomposition in a liquid photosystem using the anatase structure of Cu loaded TiO2”, Int. J. Hydrogen Energ, 32(16), 3841-3848 (2007).
    37. B. Wood, H. Wise and R. Yolles, “Selectivity and stoichiometry of copper oxide in propylene oxidation”, J. Catal, 15(4), 355-362 (1969).
    38. W. Siripala, A. Ivanovskaya, T. F. Jaramillo, et al, “A Cu2O/TiO2 heterojunction thin film cathode for photoelectrocatalysis”, Sol. Energ. Mat. Sol. C, 77(3), 229-237 (2003).
    39. T. Nishide, and F. Mizukami, “Effect of ligands on crystal structures and optical properties of TiO2 prepared by sol-gel processes”, Thin Solid Films, 353, 67-71 (1999).
    40. H. Lin, H. Kozuka, and T. Yoko, “Preparation of TiO2 films on self-assembled monolayers by sol-gel method”, Thin Solid Films, 315, 111-117 (1998).
    41. S. C. Kim, M. C. Heoa, S. H. Hahna, C. W. Lee, J. H. Joo, J. S. Kim, I. K. Yoo, and E. J. Kim, “Optical and photocatalytic properties of Pt-photodeposited sol-gel TiO2 thin films”, Mater. Lett., 59, 2059-2063 (2005).
    42. Z. F. Yuan, B. Li, J. L. Zhang, C. Xu, and J. J. Ke, “Synthesis of TiO2 thin film by a modified sol-gel method and properties of the prepared films for photocatalyst”, J. Sol-Gel Sci. Technol., 39, 249-253 (2006).
    43. G. S. Vicente, A. Morales, and M. T. Gutierrez, “Preparation and characterization of sol–gel TiO2 antireflective coatings for silicon”, Thin Solid Films, 391, 133-137 (2001).
    44. Y. Lei, L. D. Zhang, and J. C. Fan, “Fabrication, characterization and Raman study of TiO2 nanowire arrays prepared by anodic oxidative hydrolysis of TiCl3”, Chem. Phys. Lett., 338, 231-236 (2001).
    45. Q. Zhang, L. Gao, J. Sun, and S. Zheng, “Preparation of long TiO2 nanotubes from ultrafine rutile nanocrystals”, Chem. Lett., 226-227 (2002).
    46. S. Zhang, L. M. Peng, Q. Chen, G. H. Du, G. Dawson, and W. Z. Zhou, “Formation mechanism of H2Ti3O7 nanotubes”, Phys. Rev. Lett., 91, 256103 (2003).
    47. A. Thorne, A. Kruth, D. Tunstall, J. T. S. Irvine, and W. Z. Zhou, “Formation, structure, and stability of titanate nanotubes and their proton conductivity”, J. Phys. Chem. B, 109, 5439-5444 (2005).
    48. A. Jaroenworaluck, D. Regonini, C. R. Bowen, R. Stevens, and D. Allsopp, “Macro, micro and nanostructure of TiO2 anodized films prepared in a fluorine-containing electrolyte”, J. Mater. Sci., 42, 6729-6734 (2007).
    49. D. Gong, C. A. Grimes, and O. K. Varghese, “Titanium oxide nanotube arrays prepared by anodic oxidation”, J. Meter. Res., 16, 3331-3334 (2001).
    50. S. K. Mohapatra, M. Misra, V. K. Mahajan, and K. S. Raja, “A novel method for the synthesis of titania nanotubes using sonoelectrochemical method and its application for photoelectrochemical splitting of water”, J. Catal., 246, 362–369 (2007).
    51. J. M. Macak, H. Tsuchiya, L. Taveira, S. Aldabergerova, and P. Schmuki, “Smooth anodic TiO2 nanotubes”, Angew. Chem.-Int. Edit., 44, 7463-7465 (2005).
    52. Y. Xie, “Photoelectrochemical reactivity of polyoxophosphotungstates embedded in titania tubules”, Nanotechnology, 17, 3340-3346 (2006).
    53. W. Chanmanee, A. Watcharenwong, C. R. Chenthamarakshan, P. Kajitvichyanukul, N. R. de Tacconi, and K. Rajeshwar, “Titania nanotubes from pulse anodization of titanium foils”, Electrochem. Commun., 9, 2145-2149 (2007).
    54. D. J. Yang, H. G. Kim, S. J. Cho, and W. Y. Choi, “Thickness-conversion ratio from titanium to TiO2 nanotube fabricated by anodization method”, Mater. Lett., 62, 775-779 (2008).
    55. J. Bai, B. Zhou, L. Li, Y. Liu, Q. Zheng, J. Shao, X. Zhu, W. Cai, J. Liao, and L. Zou, “The formation mechanism of titania nanotube arrays in hydrofluoric acid electrolyte”, J. Mater. Sci., 43, 1880-1884 (2008).
    56. S. H. Kang, J. Y. Kim, H. S. Kim, and Y. E. Sung, “ Formation and mechanistic study of self-ordered TiO2 nanotubes on Ti substrate”, J. Ind. Eng. Chem., 14, 52-59 (2008).
    57. R. Beranek, H. Hildebrand, and P. Schmuki, “Self-organized porous titanium oxide prepared in H2SO4/HF electrolytes”, Electrochem. Solid State Lett., 6, B12-14 (2003).
    58. J. Zhao, X. Wang, R. Chen, and L. Li, “Fabrication of titanium oxide nanotube arrays by anodic oxidation”, Solid State Commun., 134, 705-710 (2005).
    59. S. Ijima, “Helical microtubules of graphitic carbon”, Nature, 354, 56-58 (1991).
    60. J. L. Tao, et al., "Mechanism study of self-organized TiO2 nanotube arrays by anodization." New Journal of Chemistry, 32(12) 2164 (2008).
    61. K. L. Hardee, and A. J. Bard, “Semiconductor Electrodes.” J. Electrochem. Soc., 124(2), 215-224 (1977).
    62. M. T. S. Nair, L. Guerrero, O. L. Arenas, and P. K. Nair, “Chemically deposited copper oxide thin films: structural, optical and electrical characteristics.” Appl. Surf. Sci., 150(1-4), 143-151 (1999).
    63. M. Schurr, M. Seidl, A. Brugger, and H. Voit, “Copper-oxide thin films prepared from Langmuir–Blodgett films.” Thin Solid Films, 342(1-2), 266-269 (1999).
    64. S. Ghosh, D. K. Avasthi, P. Shah, V. Ganesan, et al., “Deposition of thin films of different oxides of copper by RF reactive sputtering and their characterization.” Vacuum, 57(4), 377-385(2000).
    65. S. Ishizuka, S. Kato, T. Maruyama, and K. Akimoto, ” Nitrogen Doping into Cu2O Thin Films Deposited by Reactive Radio-Frequency Magnetron Sputtering.” Jpn. J. Appl. Phys., 40, 2765-2768 (2001).
    66. K. P. Muthe, J. C. Vyas, S. N. Narang, D. K. Aswal, et al., “A study of the CuO phase formation during thin film deposition by molecular beam epitaxy.” Thin Solid Films, 324(1-2), 37-43 (1998).
    67. K. Nakaoka, and K. Ogura, “Electrochemical Preparation of p-Type Cupric and Cuprous Oxides on Platinum and Gold Substrates from Copper(II) Solutions with Various Amino Acids.” J. Electrochem. Soc., 149(11), C579-C585 (2002).
    68. K. Ogura, K. Nakaoka, M. Nakayama, and S. Tanaka, “A new type of electrochemical formation of copper oxide during redox processes of the copper(II)–glycine complex at high pH.” J. Electroanal. Chem., 511(1-2), 122-127 (2001).
    69. P. Poizot, C. J. Hung, M. P. Nikiforov, E. W. Bohannan, et al., “An Electrochemical Method for CuO Thin Film Deposition from Aqueous Solution.” Electrochem. Solid-State Lett., 6(2), C21-C25 (2003).
    70. K. Santra, P. Chatterjee, S. P. Sen Gupta, ” Powder profile studies in electrodeposited cuprous oxide films.” Sol. Energy Mater. Sol. Cells, 57(4), 345-358(1999).
    71. A. K. Mukhopadhyaya, A. K. Chakrabortya, A. P. Chatterjeea, and S.K. Lahiri, “Galvanostatic deposition and electrical characterization of cuprous oxide thin films.” Thin Solid Films, 209(1), 92-96 (1992).
    72. S. B. Ogale, P. G. Bilurkar, N. Mate, S. M. Kanetkar, et al., “Deposition of copper oxide thin films on different substrates by pulsed excimer laser ablation.” J. Appl. Phys. 72, 3765 (1992).
    73. M. Fujinaka, and A. A. Berezin, “Cuprous oxide–indium–tin oxide thin film photovoltaic cells.” J. Appl. Phys. 54, 3582 (1983).
    74. A. Watcharenwong, W. Chanmanee, N. R. de Tacconi, C. R. Chenthamarakshan, P. Kajitvichyanukul, and K. Rajeshwar, “Self-organized TiO2 nanotube arrays by anodization of Ti substrate: effect of anodization time, voltage and medium composition on oxide morphology and photoelectrochemical response”, J. Mater. Res., 22, 3186-3195 (2007).
    75. D. Tench, and L. G. Warren,” Electrodeposition of conducting transition metal oxide/hydroxide films from aqueous solution.” J. Electrochem. Soc., 130(4), C869-C872 (1983).
    76. A.E. Rakhshani, and J. Varghese, “Galvanostatic deposition of thin films of cuprous oxide.” Sol. Energy Mater., 15(4), 237-248 (1987).
    77. T. D. Golden, M. G. Shumsky, Y. Zhou, R. A. VanderWerf, et al., “Electrochemical Deposition of Copper (I) Oxide Films.” Chem. Mater., 8 (10), 2499–2504 (1996).
    78. P. E. de Jongh, D. Vanmaekelbergh and J. J. Kelly, “Photoelectrochemistry of electrodeposited Cu2O”, J. Electrochem. Soc 147(2) 486-489 (2000).
    79. P. De Jongh, D. Vanmaekelbergh and J. Kelly, “Cu2O: Electrodeposition and characterization”, Chem. Mater, 11(12) 3512-3517 (1999).
    80. T. Mahalingam, J. S. P. Chitra, J. P. Chu, H. Moon, et al., “Photoelectrochemical solar cell studied on electroplated cuprous oxide thin films.” J. Mater. Sci: Mater Electron, 17, 519-523 (2006).
    81. A. K. Ghosh, and H. P. Maruska, “Photoelectrolysis of water in sunlight with sensitized semiconductor electrodes”, J. Electrochem. Soc., 124, 1516-1521 (1977).
    82. R. B. James, “Photoproduction of hydrogen: A review”, Sol. Energy, 57, 37–50 (1996).
    83. A. Bott, "Electrochemistry of semiconductors." Current Separations, 17 87 (1998).
    84. Y. Xie, “Photoelectrochemical application of nanotubular titania photoanode”, Electrochim. Acta, 51, 3399-3406 (2006).
    85. Y. B. Xie, and X. Z. Li, “Preparation and characterization of TiO2/Ti film electrodes by anodization at low voltage for photoelectrocatalytic application” J. Appl. Electrochem., 36, 663-668 (2006).
    86. S. Kakuta and T. Abe, "Structural Characterization of Cu2O After the Evolution of H2 Under Visible Light Irradiation." Electrochemical and Solid-State letters, 12(3) 3 (2009).
    87. P. E. de Jongh, D. Vanmaekelbergh and J. J. Kelly, "Cu2O: a Catalyst for the Photochemical Decomposition of Water?", Chem. Comm, 2 (1999).
    88. I. Barin, “Thermochemical data of pure substance, part I. Weinheim: VCH Verlagsgeselschaft mbH”, 796 (1989).
    89. W. Shang, X. Shi, X. Zhang, et al., "Growth and Characterization of Electro-deposited Cu2O and Cu Thin Films by Amperometric I-T method on ITO/glass substrate." Applied physics A, 87 7 (2007).
    90. S. Sumikura, S. Mori, S. Shimizu, et al, “Photoelectrochemical characteristics of cells with dyed and undyed nanoporous p-type semiconductor CuO electrodes”, J. Photoch. Photobio. A, 194(2-3) 143-147 (2008).
    91. J. Kiwi and M. Gratzel, "Optimization of conditions for photochemical water cleavage. Aqueous platinum/TiO2 (anatase) dispersions under ultraviolet light." The Journal of Physical Chemistry, 88(7) 1302-1307 (1984).
    92. A. Mills and S. Hunte, "An overview of semiconductor photocatalysis." Journal of Photochemistry and Photobiology-Chemistry Section, 108(1) 1-36 (1997).
    93. D. Hwang, H. Kim, J. Kim, et al., "Photocatalytic water splitting over highly donor-doped (110) layered perovskites." Journal of Catalysis, 193(1) 40-48 (2000).
    94. A. Hameed and M. Gondal, "Production of hydrogen-rich syngas using p-type NiO catalyst: a laser-based photocatalytic approach." Journal of Molecular Catalysis A: Chemical, 233(1-2) 35-41 (2005).
    95. K. Izawa, T. Yamada, U. Unal, et al., "Photoelectrochemical Oxidation of Methanol on Oxide Nanosheets." J. Phys. Chem. B, 110 5 (2006).

    下載圖示 校內:2012-07-21公開
    校外:2012-07-21公開
    QR CODE