簡易檢索 / 詳目顯示

研究生: 王偉芯
Wang, Wei-Hsin
論文名稱: 台灣彰化近海土壤動態性質試驗研究
Experiment Study on Offshore Dynamic Properties of Soil at Changhua, Taiwan
指導教授: 倪勝火
Ni, Sheng-Huoo
學位類別: 碩士
Master
系所名稱: 工學院 - 土木工程學系
Department of Civil Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 101
中文關鍵詞: 共振柱剪力模數阻尼比剪力波速
外文關鍵詞: resonant column test, shear modulus, damping ratio, shear wave velocity
相關次數: 點閱:201下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究使用台灣彰化近海鑽探取得之原狀土樣進行共振柱試驗,依據統一土壤分類法進行土樣分類,將所得剪力模數及阻尼比等參數分析其動態性質及行為,並建立相關參數經驗式。另將剪力波速與現地標準貫入N值及深度迴歸出區域性經驗公式,並與現有迴歸式進行比較。
    剪力模數關係比較,利用Hardin(1978)、Hardin 和 Richart(1963)及Lo Presti等人(1997)三種方法,將試驗迴歸所得經驗式比較差異約8.6 %,剪力模數均隨有效圍壓增加而上升;與時間效應的關係,低塑性黏土(CL)土樣時間初至1000分鐘剪力模數上升最高可達49 %,與Sas等人(2015)試驗結果50 %相近,長期效應時間因子之公式看出"I" _"G" 值隨圍壓增高而增大,但於320 kPa有下降之趨勢,而試驗"N" _"G" 值於7.2 % ~ 16.4%,與Mesri等人(1990)提出相符;剪應變分析得C及R值隨圍壓增大而減小,除沉泥質砂(SM)的R值隨圍壓增大而增大。
    阻尼比關係比較,得黏土於圍壓效應比較上較為明顯,時間關係整體趨勢為阻尼比隨時間的增加而降低,但從時間點來看無法確定阻尼比隨時間增加,阻尼比隨應變之增加而增大,呈現出非線性之關係,剪應變比較砂質土樣比黏性土樣整體呈現出更高的阻尼比,與Kokusho (1987) 提出之離散材料(砂、礫石)比凝聚性土壤具有更大的能量阻尼理論相符。

    This research conducts the resonant column test using the undisturbed soil sample extracted from the offshore near Changhua. The soil was first classified according to the Unified Soil Classification System, and the obtained shear modulus and damping ratio were then used to analyze its dynamic properties and behaviors. The shear wave velocity, in-situ Standard Penetration Test N-value (SPT-N), and depth were used by regression method to derive the local empirical equations, which were compared the current empirical equations.
    The shear modulus increases as the confining pressure is increased. For the time effect, the shear modulus for the lean clay (CL) after 1000 minutes can be 49 % higher than that at the beginning. The "I" _"G" value increases as the confining pressure is increased, using the equation with the long term effect. When the confining pressure reaches 320 kPa, the "I" _"G" value starts decreasing. For the experimental "N" _"G" values between 7.2 % and 16.4 %, based on the relationship between shear strain and shear modulus, the values for C and R decrease as the confining pressure is increased. However, for silty sand (SM) the R value increases when the confining pressure is increased.
    For the damping ratio, the effect by the confining pressure is more obvious for the clay. Overall, the damping ratio decreases with time. It cannot be concluded that the damping ratio increases with time. damping ratio increases as the shearing strain increases, and even becomes nonlinear. For the shear strain comparison, the sandy soil exhibits higher damping ratio than the clay soil.

    摘要 I Extended Abstract II 誌謝 VIII 目錄 IX 圖目錄 XII 表目錄 XVI 第一章 緒論 1 1.1研究背景 1 1.2研究方法 1 1.3論文內容 2 第二章 文獻回顧 4 2.1 前言 4 2.2土壤動態量測方法及適用範圍 4 2.2.1 現地試驗 4 2.2.2試驗室試驗 5 2.3共振柱試驗 7 2.3.1 共振柱試驗之發展 7 2.3.2共振柱儀器常見之型式 7 2.4土壤動態性質 9 2.4.1 剪力模數 9 2.4.2 阻尼比 15 2.5剪力波速(Vs)應用評估方式 17 2.5.1剪力波速影響因素 18 2.5.2剪力波速(Vs)與SPT-N值之迴歸式樣 20 第三章 試驗室土壤性質試驗 21 3.1前言 21 3.2共振柱試驗 21 3.2.1準備步驟 21 3.2.2試驗程序 27 第四章 實驗室試驗分析與討論 30 4.1引言 30 4.2基本物性試驗 30 4.3 共振柱試驗 31 4.3.1剪力模數 31 4.3.2阻尼比 47 第五章 剪力波速與N值及深度相關性 51 5.1迴歸方式 51 5.1.1土層分類 51 5.1.2經驗公式迴歸式樣 51 5.1.3檢驗經驗式樣配適度 53 5.1.4過去迴歸經驗公式 53 5.2 試驗結果分析 55 5.2.1剪力波速之測定 55 5.2.2剪力波速迴歸結果 57 5.2.3 不同公式與剪力波速迴歸式比較 67 5.2.4與過去迴歸結果比較 70 第六章 結論與建議 76 6.1結論 76 6.1.1共振柱試驗結論 76 6.1.2迴歸分析結論 78 6.2建議 79 參考文獻 80 附錄A 基本物性試驗 95

    1.王金山,「共振柱試驗之土壤動力性質」,碩士論文,國立中央大學土木工程研究所,2004年。
    2.內政部,「建築物耐震設計規範及解說」,台內營字第0990810250號,2011年。
    3.沈茂松,實用土壤力學試驗,第九版,文笙書局,2010年。
    4.李咸亨、吳志明,「台北盆地土壤之動態性質研究(三)~ 下井探測法與剪力波速迴歸分析之探討」,國立台灣工業技術學院營建工程技術系,行政院國家科學委員會防災科技研究報告79-04號,1990年。
    5.李豐博、李延恭、陳圭璋、謝明志、簡連貴、蘇吉立,「土壤動態性質研究」,交通部運輸研究所港灣技術研究中心,研(五),1986年。
    6.吳偉特,「土壤動力學與大地工程」,地工技術雜誌,第九期,1985年。
    7.陳志瑋,「細料含量對乾粉質砂土動態行為影響之研究」,碩士論文,國立成功大學土木工程研究所,2010年。
    8.陳昱憲,「頻率比對臺北盆地含細料砂土動態特質與地盤反應分析之初步研究」,國立臺灣大學土木工程研究所,1999年。
    9.倪勝火,土壤力學實驗手冊,國立成功大學土木工程學系,2015年。
    10.倪勝火、常正之、黃達勇、施旭峰、陳建民, 「高雄市區土壤動態特性之研究(一)」,國立成功大學土木工程研究所,行政院國家科學委員會防災科技研究報告79-13號,1990年。
    11.徐瑞旻,「共振柱試驗程式式窗化之研究」,碩士論文,國立成功大學土木工程研究所,2002年。
    12.莊睦雄,「土壤阻尼性質與頻率之關係及對地盤反應之影響」,博士論文,國立臺灣大學土木工程研究所,1998年。
    13.鄧勝益,「共振柱試驗自動化之探討與研究」,碩士論文,國立成功大學土木工程研究所,1995年。
    14.ASTM (2006), D4015-92 standard test methods for modulus and damping of soils by the resonant-column method, ASTM Book of Standards, Philadelphia.
    15.Afifi, S.S., and Richart, F.E. (1973), “Stress-history effects on shear modulus of soils,” Soils and Foundations, Vol. 13, No. 1, pp. 77-95.
    16.Afifi, S.S., and Woods, R.D. (1971), “Long-term pressure effects on shear modulus of soils,” Journal of Soil Mechanics & Foundations Division, ASCE, Vol. 97, No. SM10, pp. 1445-1461.
    17.Amini, F. (1995), “Time effects on dynamic soil properties under random excitation conditions,” Soil Dynamics and Earthquake Engineering, Vol. 14, No. 6, pp. 439-443.
    18.Anderson, D.G., and Stokoe, K.H. (1978), “Shear modulus: A time-dependent soil property,” Dynamic geotechnical testing, ASTM International.
    19.Anderson, D.G. (1974), “Dynamic Modulus of Cohesives Soils,” Thesis presented to the University of Michigan, at Ann Arbor, Mich., in partial fulfillment of the requirements for the degree of Doctor of Philosophy.
    20.Athanasopoulos, G.A. (1995), “Empirical correlations -NSPT for soils of Greece: a comparative study of reliability,” WIT Transactions on The Built Environment, Vol. 15, pp. 8.
    21.Carlton, B.D., and Pestana, J.M. (2016), “A unified model for estimating the in-situ small strain shear modulus of clays, silts, sands, and gravels,” Soil Dynamics and Earthquake Engineering, Vol. 88, pp. 345-355.
    22.Cascante, G., Vanderkooy, J., and Chung, W. (2005), “A new mathematical model for resonant-column measurements including eddy-current effects,” Canadian Geotechnical Journal, Vol. 42, No. 1, pp. 121-135.
    23.Chung, R.M., Yokel, F.Y., and Drnevich, V.P. (1984), “Evaluation of dynamic properties of sands by resonant column testing,” Geotech. Test. J., Vol. 7, No. 2, pp. 60–69.
    24.Das, B.M. (1993), Principles of Soil Dynamics, PWS-KENT Publishing Co., Boston.
    25.Darendeli, B.M. (2001), Development of a new family of normalized modulus reduction and material damping curves. Ph.D. thesis, University of Texas at Austin. USA.
    26.Devore, J. L. (2011), Probability and Statistics for Engineering and the Sciences 8th Edition, Cengage Learning, Inc, U.S.A.
    27.Dikmen, U. (2009), “Statistical correlations of shear wave velocity and penetration resistance for soils,” Journal of Geophysics and Engineering, Vol. 6, No.1, pp. 61-72.
    28.El Mosallamy, M., El Fattah, T. T. A., and El Khouly, M. (2016), “Experimental study on the determination of small strain-shear modulus of loess soil,” HBRC Journal, Vol. 12, No.2, pp. 181-190.
    29.Farrokhzad, F. (2016), and Choobbasti, A.J., “Empirical correlations of shear wave velocity ( ) and standard penetration resistance based on soil type in Babol city,” Indian Journal of Geo Marine Sciences, Vol. 45, No. 11, pp. 1566-1577.
    30.Fauzi, A., Irsyam, M., and Fauzi, U.J. (2014), “Empirical correlation of shear wave velocity and NSPT value for Jakarta,” Int. J. GEOMATE, Vol. 7, No. 1, pp. 980-984.
    31.Fumal, T., and Tinsley, J.C. (1985), “Mapping shear wave velocities of near surface geologic materials,” Evaluating Earthquake hazards in the Los Angeles Region-An Earth-Science Perspective, United States Geological Survey (USGS)Professional Paper 1360, pp. 101-126.
    32.Fujiwara, T. (1972), “Estimation of ground movements in Actual Destructive Earthquakes,” Proceedings of the 4th European Symposium on Earthquake Engineering, pp.125-132.
    33.Gautam, D. (2016), “Empirical correlation between uncorrected standard penetration resistance (N) and shear wave velocity ( ) for Kathmandu Valley, Nepal,” Geomatics, Natural Hazards and Risk, pp. 1-13.
    34.Hall, J.R.,Jr., and Richart, F.E.,Jr,. (1963), “Dissipation of elastic wave energy in granular soils,” Journal of the Soil Mechanics and Foundations Division, ASCE, Vol. 89, No. SM6, pp. 27-56.
    35.Hardin, B.O. (1978), “The nature of stress-strain behavior for soils,” Earthquake Engineering and Soil Dynamics-Proceedings, ASCE, Vol. 1.
    36.Hardin, B.O., and Drenvich, V.P. (1972), “Shear Modulus and Damping in Soils: Design Equations and Curves,” Journal of the Soil Mechanics and Foundations Division, ASCE, Vol. 98, No. SM7, pp. 667-692.
    37.Hardin, B.O., and Black, W.L. (1968), “Vibration Modulus of Normally Consolidated Clay,” Journal of the Soil Mechanics and Foundations Division, ASCE, Vol. 94, No. SM2, pp. 353-369.
    38.Hardin, B.O., and Drnevich V.P. (1972), “Shear Modulus and Damping in Soils:Measurement and Parameter Effects,” Journal of Soil Mechanics and Foundations Division, ASCE, Vol. 98, No. SM6, pp. 603-624.
    39.Hardin, B.O., and Richart, F.E, Jr. (1963), “Elastic Wave Velocities in Granular Soils,” Journal of the Soil Mechanics and Foundations Division, ASCE, Vol. 89, No. SM1, pp. 33-65.
    40.Hasançebi, N., Ulusay, R. (2006), “Empirical correlations between shear wave velocity and penetration resistance for ground shaking assessments,” Bull Eng Geol Environ, Vol. 66, pp. 203-213.
    41.Imai, T., and Tonouchi, K. (1982), “Correlation of N-value with S-wave velocity and shear modulus,” Proceedings of the 2nd European Symposium of Penetration Testing, Amsterdam, pp. 57-72.
    42.Imai, T. (1977), “P-and S-wave velocities of the ground in Japan,” Proceedings 9th International Conference on Soil Mechanics and Foundation Engineering, Japan, Vol. 2, pp. 127–32.
    43.Imai, T., and Yoshimura, M. (1976), “The relation of mechanical properties of soils to P and S wave velocities for soil ground in Japan.” Urana Research Institute, OYO Corporation, Japan.
    44.Imai, T., Fumoto, H., and Yokota, K. (1975), “The relation of mechanical properties of soil to P- and S- wave velocities,” Japan Proceedings 4th Japan Earthquake Engineering Symp, pp. 89-96 (in Japanese).
    45.Imai, T., and Yoshimura, Y. (1970), “Elastic wave velocity and soil properties in soft soil,” Tsuchito-Kiso, Vol. 18, No. 1, pp. 17-22. (In Japanese).
    46.Iwasaki, T., and Tatsuoka, F. (1977), “Effects of Grain Size and Grading on Dynamic Shear Moduli of Sands,” Soils and Foundations, Japanese Society of Soil Mechanics and Foundation Engineering, Vol. 17, No. 3, pp. 19-35
    47.Iwasaki, T., Tatsuoka, F., and Yoshida, Y. (1977), “Shear modulus of sands under cyclic torsional shear loading,” Soils and Foundation, Vol. 18, pp. 39-56.
    48.Iyisan, R. (1996), “Correlations between shear wave velocity and in-situ penetration test results Teknik Dergi in Turkish,” Chamber of Civil Engineers of Turkey, Vol.7, No. 2, pp. 1187-1199.
    49.Jafari, M.K., Shafiee, A., and Ramzkhah, A. (2002), “Dynamic Properties of Fine Grained Soils in South of Tehran,” Journal of Seismological Earthquake Engineering, Vol. 4, pp. 25-35.
    50.Jafari, M.K., Asghari, A., and Rahmani, I. (1997), “Empirical correlation between shear wave velocity ( ) and SPT-N value for south of Tehran soils,” Proc. 4th Int. Conf. on Civil Engineering (Tehran, Iran) (in Persian).
    51.Jamiolkowski, M., and Manassero, N. (1996), “The role of in situ testing in geotechnical engineering - thoughts about the future,” Advances in Site Investigation Practice, Thomas Telford, pp. 929-951.
    52.Jamiolkowski, M., Lancellotta, R., and Lo Presti, D.C.F. (1995), “Remarks on the Stiffness at Small Strains of Six Italian Clays,” Shibuya, M. & Miura (eds.), Pre-failure Deformation of Geomaterials, Vol. 1, pp. 817-836.
    53.Jinan, Z. (1987), “Correlation between seismic wave velocity and the number of blow of SPT and depth,” Selected papers from the Chinese Journal of Geotechnival Engineering, ASCE, pp. 92-100.
    54.Kayabali, K. (1996), “Soil liquefaction evaluation using shear wave velocity,” Engineering Geology, Vol. 44, No. 1-4, pp. 121-127.
    55.Kalteziotis, N., Sabatakakis, N., and Vassiliou, J. (1992), “Evaluation of dynamic characteristics of Greek soil formations,” Second Hellenic Conference on Geotechnical Engineering, Vol. 2, pp. 239–246.
    56.Kanai, K. (1966), “Improved empirical formula for the characteristics of strong earthquake motions,” Proceedings, Japan Earthquake Engineering Symposium, Tokyo, pp. 1-4.
    57.Kiku, H., Yoshida, N., Yasuda, S., Irisawa, T., Nakazawa, H., Shimizu, Y., Ansal, A., and Erkan, A. (2001), “In-situ penetration tests and soil profiling in Adapazarı,” Turkey Proc. ICSMGE/ TC4 Satellite Conf. on Lessons Learned from Recent Strong Earthquakes, pp. 259-265.
    58.Kokusho, T. (1987), “In-situ dynamic soil properties and their evaluations,” Proceedings of the 8th Asian Regional Conference on Soil Mechanice and Foundation Engineering, Vol. 2, pp. 215-240.
    59.Kokusho, T. (1980), “Cyclic triaxial test of dynamic soil properties for wide strain range,” Soils Found, Vol. 20, No. 2, pp. 45-60.
    60.Kuo C.H., Wen K.L., Hsieh H.H., Chang T.M., Lin C.M., and Chen C.T.. (2011), “Evaluating Empirical Regression Equations for and Estimating 30 in Northeastern Taiwan,” Soil Dynamics and Earthquake Engineering, Vol. 31, pp. 431-439.
    61.Lee C.T., and B.R. Tsai. (2008), “Mapping 30 in Taiwan,” Terrestrial, Atmospheric and Oceanic Sciences, Vol. 19, No. 6, pp. 671-682.
    62.Lo Presti, D.C.F., Jamiolkowski, M., Pallara, O., Cavallaro, A., and Pedroni, S. (1997), “Shear Modulus and Damping of Soils,” Géotechnique, Vol. 47, No. 3, pp. 603–617.
    63.Lee, S.H. (1990), “Regression models of shear wave velocities in Taipei basin,” Journal of the Chinese Institute of Engineers, Vol. 13, No. 5, pp. 519-532.
    64.Lodde, P.F. (1979), “Shear moduli and material damping of San Francisco Bay mud,” MS thesis, University of Texas at Austin.
    65.Maheshwari, R.U., Boominathan A., and Dodagoudar G.R. (2010),“Use of Surface Waves in Statistical Correlations of Shear Wave Velocity and Penetration Resistance of Chennai soils, ” Geotechnical and Geology Engineering, Vol. 28, No. 2, pp. 119-137.
    66.Marcuson, W.F., and Wahls, H.E. (1978), “Effects of time on damping ratio of clays,” Dynamic geotechnical testing, ASTM International.
    67.Marto, A., Tan, C.S., and Leong, T.K. (2013), “A Correlation of Shear Wave Velocity and Standard Penetration Resistance,” EJGE, Vol. 18, pp. 2727-2738.
    68.Mesri, G., Feng, T.W., and Benak, J.M. (1990), “Postdensification penetration resistance of clean sands,” Journal of Geotechnical Engineering, ASCE, Vol. 116, No. 7, pp. 1095-1115.
    69.Milton, J.S., and Arnold, J.C (2002), Introduction to probability and statistics: principles and applications for engineering and the computing sciences. McGraw-Hill, Inc, New York.
    70.Novak, M., and Kim, T.C. (1981), “Resonant column technique for dynamic testing of cohesive soils,” Canadian Geotechnical Journal, Vol. 18, No. 3, pp.448-455
    71.Ohta, Y., and Goto, N. (1978), “Empirical shear wave velocity equations in terms of characteristic soil indexes,” Journal of Earthquake Engineering & Structural Dynamics, Vol. 6, No. 2, pp. 167-187.
    72.Ohsaki, Y., and Iwasaki, R. (1973), “On dynamic shear moduli and Poisson’s ratio of soil deposits,” Soil Found, Vol. 14, No. 3, pp. 61-73.
    73.Ohta, T., Hara, A., Niwa, M., and Sakano, T. (1972), “Elastic moduli of soil deposits estimated by N-values,” In Proceedings of the 7th annual conference. The Japanese Society of Soil Mechanics and Foundation Engineering, pp. 265-268.
    74.Ohba, S., and Toriumi, I. (1970), “Dynamic response characteristics of Osaka Plain,” Proceedings of the annual meeting AIJ (in Japanese).
    75.Okamoto, T., Kokusho, T., Yoshida, Y., and Kusuonoki, K. (1989), “Comparison of surface versus subsurface wave source for P-S logging in sand layer,” Proceedings, 44th Annual Conference, JSCE. Vol. 3, pp. 996-997.
    76.Pitilakis, K.D., Anastasiadis, A., and Raptakis, D. (1992), “Field and laboratory determination of dynamic properties of natural soil deposits,” Proceedings of 10th World Conf. Earthquake Engineering, Rotherdam, pp. 1275–1280.
    77.Raptakis, D.G., Anastasiadis, S.A.J., Pitilakis, K.D., and Lontzetidis, K.S. (1995), “Shear wave velocities and damping of Greek natural soils,” Proceedings of 10th European Conf. Earthquake Engineering, Vol. 1, pp. 477-482.
    78.Richart, F.E., Hall, J.R., and Woods, R.D. (1970), Vibrations of Soils and Foundations, Prentice-Hall, New York.
    79.Sas, W., Gabryś, K., and Szymański, A. (2015), “Effect of time on dynamic shear modulus of selected cohesive soil of one section of express way no. S2 in Warsaw,” Acta Geophysica, Vol. 63, No. 2, pp. 398-413.
    80.Sas, W., and Gabryś, K. (2012), “Laboratory measurement of shear stiffness in resonant column apparatus,” ACTA Scientiarium Polonorum, series Architectura, Vol. 11, No. 4, pp. 29-39.
    81.Seed, H.B., Tokimatsu, K., and Harder, L.F. (1984), “The Influence of SPT Procedures in Evaluating Soil Liquefaction Resistance,” Report, UCB/EERC-84-15, Earthquake Engineering Reserch Center, University of California, Berkeley.
    82.Seed, H.B, and Idriss, I.M., and Arango, I. (1983), “Evaluation of liquefaction potential using field performance data,” Journal of Geotech Engineering, Vol. 109, No. 3, pp. 458-82.
    83.Seed, H.B, and Idriss, I.M. (1981), “Evaluation of liquefaction potential sand deposits based on observation of performance in previous earthquakes,” ASCE National Convention, Missouri,pp. 81-544.
    84.Shibata, T. (1970), “The relationship between the N-value and S-wave velocity in the soil layer,” Disaster Prevention Research Laboratory, Kyoto University.
    85.Shibuya, S. (1995), Mitachi, T., Fukuda, F., and Degoshi, T., “Strain Rate Effects on Shear Modulus and Damping of Normally Consolidated Clay,” Geotechnical Testing Journal, Vol. 18, No. 3, pp. 365-375.
    86.Sisman, H. (1995), “The relation between seismic wave velocities and SPT, pressuremeter tests,” MSc Thesis Ankara University.
    87.Silver, M.L. (1981), “Load Deformation and Strength Behavior of Soild under Dynamic Loading,” State-of-the-Art Paper, Proceedings of International Conference on Recent Advances in geotechnical Earthquake Engineering and Soil Dynamics, St. Louis, Vol. 3, pp. 873-895.
    88.Silver, M.L., and Seed, H.B. (1971), “Deformation Characteritistics of Sands Under Cyclic Loading,” Journal of the Soil Mechanics and Foundations Division, ASCE, Vol. 97, No. SM8, pp. 1081-1098
    89.Sun, J.I., Golesorkhi, R., and Seed., H.B. (1988), “Dynamic Moduli and Damping Ratios for Cohesive Soils,” Report No. EERC 88-15,Earthquake Engineering Research Center, University of California, Berkeley, California.
    90.Sykora, D.E., and K.H. Stokoe. (1983), “Correlations of in-situ measurements in sands of shear wave velocity,” Soil Dynamics and Earthquake Engineering, Vol. 20,pp. 125-136.
    91.Tatsuoka, F., Iwasaki, T., and Takagi, Y. (1978), “Hysteretic damping of sands under cyclic loading and its relation to shear modulus,” Soils and Foundations, Vol. 18, No. 2, pp. 25-40.
    92.Terzaghi, K. (1986), Terzaghi Lectures: 1974-1982, ASCE Publications, New York.
    93.Tonouchi, K., Sakayama, T., and Imai, T. (1983), “S wave velocity in the ground and the damping factor,” Bulletin of the International Association of Engineering Geology-Bulletin de l'Association Internationale de Géologie de l'Ingénieur Vol. 26, No. 1, pp. 327-333.
    94.Tsiambaos, G., and Sabatakakis N. (2011), “Empirical Estimation of Shear Wave Velocity from In Situ Tests on Soil Formations in Greece,” Bulletin of Engineering Geology and the Environment, Vol. 70, pp. 291-297.
    95.Yokota, K., Imai, T., and Konno, M. (1991), “Dynamic deformation characteristics of soils determined by laboratory tests,” OYO Tee. Rep. 3, pp. 13-36.
    96.Zavoral, D. (1990), “Dynamic properties of an undisturbed clay from resonant column tests,” M.Sc. Thesis, Department of Civil Engineering, The University of British Columbia, Vancouver, Canada.
    97.Zhang, J., Andrus, R.D., and Juang, C.H. (2005), “Normalized shear modulus and material damping ratio relationships,” Journal of Geotechnical and Geoenvironmental Engineering, ASCE, Vol. 131, No. 4, pp. 453-464.

    無法下載圖示 校內:2020-08-01公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE