簡易檢索 / 詳目顯示

研究生: 郭宗源
Kuo, Zong-Yuan
論文名稱: 高容量直接驅動型風力永磁發電機之特性分析
Characteristic Analysis of High-Capacity Direct-Drive Wind Permanent-Magnet Generators
指導教授: 王醴
Wang, Li
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2008
畢業學年度: 96
語文別: 中文
論文頁數: 139
中文關鍵詞: 三相永磁發電機有限元素法田口法
外文關鍵詞: finite-element method, three-phase permanent-magnet generator, Taguchi method
相關次數: 點閱:98下載:10
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文的研究目標在於使用有限元素模擬軟體,修改高容量直接
    驅動型風力用三相永磁發電機之定子鐵心厚度、定子與轉子間氣隙長度、磁石厚度、極間寬度以及定子槽深度等結構參數,以探討其對發電機效率之影響,並搭配田口法以達到提升三相永磁發電機整體運轉效率最佳化之目標。

    在本論文中,亦將針對三相永磁發電機連接電阻性平衡及不平衡負載進行特性分析,評估在不同轉速下之電壓、電流、輸出功率、效率及諧波的影響,最後分析加入整流電路對發電機之特性影響等為研究項目。本論文之模擬結果,可利用於未來生產高品質、高效率、低鐵損特性之高容量直接驅動型風力用三相永磁發電機。

    The aim of this thesis is to use simulation software based on finite-element method (FEM) to modify the stack length, the height of stator slot height, the width of stator tooth, the thickness of permanent magnet, and the air-gap length between the stator and rotor of a high-capacity direct-drive wind permanent-magnet generator (PMG) to achieve higher efficiency. The optimal efficiency of the studied PMG can also be evaluated using Taguchi method.

    This thesis also studies the influence of different three-phase balance or unbalance resistive loads on the studied PMG, the influence of different rotational speeds on voltage, current, output power, efficiency, and harmonics of the studied PMG, and the influence of a rectifier circuit on the studied PMG. In the future, these important analyzed parameters and simulation results can be utilized to manufacture a high-capacity direct-drive wind three-phase PMG with higher power quality, lower core loss, and higher efficiency.

    中文摘要................................................................................................................. I 英文摘要................................................................................................................II 誌謝....................................................................................................... III 目錄.......................................................................................................IV 圖目錄................................................................................................. VII 表目錄................................................................................................XIII 符號表...............................................................................................XVII 第一章 緒論........................................................................................1 1-1 研究目的................................................................................1 1-2 文獻回顧................................................................................2 1-3 本論文貢獻..........................................................................11 1-4 研究內容概述.......................................................................12 第二章 有限元素法及FLUX 2D 電磁模擬軟體之簡介..................15 2-1 前言......................................................................................15 2-2 有限元素法簡介...................................................................15 2-2-1 電磁場的統御方程式....................................................17 2-2-2 能量極小定理及能量泛函............................................21 2-2-3 元素方程式的推導........................................................23 2-3 FLUX 2D 電磁模擬軟體簡介..............................................28 2-4 FLUD 2D 設計流程.............................................................29 2-5 本章結論..............................................................................35 V 第三章 三相永磁發電機有限元素模型之建立................................36 3-1 前言......................................................................................36 3-2 建立三相永磁發電機有限元素模型之步驟與方法............36 3-3 永磁發電機之模擬結果.......................................................42 第四章 三相永磁發電機之效率分析...............................................49 4-1 前言......................................................................................49 4-2 改變發電機的定子鐵心厚度...............................................49 4-3 改變定子與轉子間氣隙長度...............................................51 4-4 改變磁石厚度.......................................................................53 4-5 改變定子齒寬度...................................................................55 4-6 改變定子槽深度...................................................................57 4-7 本章結論..............................................................................59 第五章 利用田口法做最佳化處理...................................................60 5-1 前言......................................................................................60 5-2 田口法簡介..........................................................................60 5-3 發電機最佳化前置處理.......................................................62 5-4 最佳化分析結果...................................................................63 5-4-1 平均值分析(analysis of means , ANOM).......................63 5-4-2 變異性分析(analysis of variance, ANOVA)...................69 5-5 本章結論..............................................................................72 第六章 三相永磁發電機在不同轉速下之負載特性分析................74 6-1 前言......................................................................................74 6-2 改變轉速對三相永磁發電機之穩態分析............................74 VI 6-3 三相平衡負載變動下之特性分析.......................................74 6-4 三相不平衡負載變動下之特性分析....................................78 6-5 三相永磁發電機連接電感性負載.......................................91 6-6 三相永磁發電機連接二極體橋式整流器電路之特性分析.97 6-6.1 固定負載電阻改變濾波電容.....................................97 6-6.2 固定濾波電容下改變負載電阻...............................100 6-6.3 沒有濾波電容下改變負載電阻...............................101 6-6.4 三相永磁發電機斷一線...........................................103 6-7 本章結論............................................................................106 第七章 三相永磁發電機之諧波分析.............................................108 7-1 前言....................................................................................108 7-2 三相永磁發電機在低轉速下之諧波分析..........................109 7-3 三相永磁發電機無載及滿載之諧波分析.......................... 112 7-4 不同轉速下發電機端電壓之諧波分析.............................. 116 7-5 固定負載電阻下不同濾波電容時發電機端之諧波分析.. 119 7-6 固定濾波電容下不同負載電阻時發電機端之諧波分析..122 7-7 沒有濾波電容下不同負載電阻時發電機端之諧波分析..124 7-8 單線故障時發電機端之諧波分析.....................................126 7-9 本章結論............................................................................132 第八章 結論與未來研究方向.........................................................133 8-1 結論.......................................................................................133 8-2 未來研究方向.......................................................................134 參考文獻.............................................................................................135

    [1] H. Polinder, F. F. A. Van der Pijl, G. J. de Vilder, and P. J. Tavner,
    “Comparison of direct-drive and geared generator concepts for wind
    turbines,” IEEE Transactions on Energy Conversion, vol. 21, no. 3,
    September 2006, pp. 725-733.
    [2] C. N. Ashtiani and J. Vaidya, “Design evaluation of a high-speed
    permanent magnet generator for load performance by finite
    elements,” IEEE Transactions on Magnetics, vol. 22, no. 2,
    September 1986, pp. 825-827.
    [3] E. Spooner and A. C. Williamson, “Direct coupled, permanent
    magnet generators for wind turbine applications,” IEE Proceeding
    on Electric Power Applications, vol. 143, no. 1, January 1996, pp.
    1-8.
    [4] T. F. Chan and L. T. Yan, “Analysis and performance of a
    surface-mounted NdFeB permanent-magnet AC generator,” IET
    Advances in Power Systems Control, Operation and Management
    Conference, vol. 2, November 1997, pp. 718-722.
    [5] E. Muljadi, C. P. Butterfield, and Y. H. Wan, “Axial flux, modular,
    permanent-magnet generator with a toroidal winding for wind
    turbine applications,” IEEE Industry Applications Conference, vol.
    1, no. 1, May 1998, pp. 174-178.
    [6] E. Muljadi, C. P. Butterfield, and Y. H. Wan, “Axial-flux modular
    permanent-magnet generator with a toroidal winding for
    wind-turbine applications,” IEEE Transactions on Industry
    Applications, vol. 35, no. 2, July-August 1999, pp. 831-836.
    [7] J. Rizk and M. Nagrial, “Design of permanent-magnet generators
    for wind turbines,” IEEE Power Electronics and Motion Control
    Conference, vol. 1, no. 2, March 2000, pp. 208-212.
    136
    [8] J. Chen, C. V. Nayar, and L. Xu, “Design and finite-element
    analysis of an outer-rotor permanent-magnet generator for directly
    coupled wind turbines,” IEEE Transactions on Magnetics, vol. 36,
    no. 2, September 2000, pp. 3082-3089.
    [9] W. Wu, V. S. Ramsden, T. Crawford, and G. Hill, “A low speed,
    high-torque, direct-drive permanent magnet generator for wind
    turbines,” IEEE Industry Applications Conference, vol. 1, no. 1,
    October 2000, pp. 147-154.
    [10] G. Tsekouras, S. Kiartzis, A. G. Kladas, and J. A. Tegopoulos,
    “Neural network approach compared to sensitivity analysis based on
    finite element technique for optimization of permanent magnet
    generators,” IEEE Transactions on Magnetics, vol. 37, no. 3,
    September 2001, pp. 3618-3621.
    [11] M. V. Ferreira da Luz, P. Dular, N. Sadowski, C. Geuzaine, and J. P.
    A. Bastos, “Analysis of a permanent magnet generator with dual
    formulations using periodicity conditions and moving band,” IEEE
    Transactions on Magnetics, vol. 38, no. 2, March 2002, pp.
    961-964.
    [12] A. J. Mitcham and J. J. A. Cullen, “Permanent magnet generator
    options for the more electric aircraft,” IET Power Electronics,
    Machines and Drives Conference, June 2002, pp. 241-245.
    [13] T. F. Chan, L. T. Yan, and L. L. Lai, “Performance of a
    permanent-magnet A.C. generator with rotor inverse saliency,”
    IEEE Electrical Machines and Systems Conference, vol. 1, no. 1,
    November 2003, pp. 45-48.
    [14] P. H. Mellor, S. G. Burrow, T. Sawata, and M. Holme, “A
    wide-speed-range hybrid variable-reluctance/permanent-magnet
    generator for future embedded aircraft generation systems,” IEEE
    Transactions on Industry Applications, vol. 41, no. 1, March-April
    2005, pp. 551-556.
    137
    [15] K. C. Kim, S. B. Lim, K. B. Jang, S. G. Lee, J. Lee, Y. G. Son, Y. K.
    Yeo, and S. H. Baek, “Analysis on the direct-driven high power
    permanent magnet generator for wind turbine,” IEEE Electrical
    Machines and Systems Conference, no. 1, September 2005, pp.
    234-237.
    [16] Y. H. Chen, P. Pillay, and A. Khan, “PM wind generator topologies,”
    IEEE Transactions on Industry Applications, vol. 41, no. 6,
    November-December 2005, pp. 1619-1626.
    [17] T. F. Chan and L. L. Lai, “An Axial-flux permanent-magnet
    synchronous generator for a direct-coupled wind-turbine system,”
    IEEE Transactions on Energy Conversion, vol. 22, no. 1, March
    2007, pp. 86-94.
    [18] H. Polinder, D. Bang, R. P. J. O. M. van Rooij, A. S. McDonald, and
    M. A. Mueller, “10 MW wind turbine direct-drive generator design
    with pitch or active speed stall control,” IEEE Electric Machines
    and Drives Conference, vol. 2, May 2007, pp. 1390-1395.
    [19] H. Li and Z. A. Chen, “Design optimization and comparison of large
    direct-drive permanent magnet wind generator systems,” IEEE
    Electric Machines and Systems Conference, October 2007, pp.
    685-690.
    [20] S. G. Burrow, P. H. Mellor, P. H. Churn, T. H. Sawata, and M. H.
    Holme, “Sensorless operation of a permanent-magnet generator for
    aircraft,” IEEE Transactions on Industry Applications, vol. 44, no. 1,
    January-February 2008, pp. 101-107.
    [21] S. H. Park, Robust Design and Analysis for Quality Engineering,
    Chapman & Hall, 1996.
    [22] CEDRAT, FLUX2D Version 7.40 User’s Guide, June 1999
    [23] 唐任远,現在永磁電機理論與設計,機械工業出版社,1997。
    [24] 吳梅豪,表面型永磁無刷馬達之設計,逢甲大學電機工程學系
    碩士論文,民國九五年七月。
    138
    [25] 蔡宗翰,風力用永磁發電機之特性分析,國立成功大學電機工
    程學系碩士論文,民國九十六年六月。

    下載圖示 校內:2011-08-26公開
    校外:2013-08-26公開
    QR CODE