簡易檢索 / 詳目顯示

研究生: 蔡旻達
Tsai, Ming-Ta
論文名稱: 鋰鈦氧負極微區界面反應之雙極探針阻抗研究
Study of microscopic electrochemical analysis on Li4Ti5O12 anode by dual electrode scanning probe
指導教授: 劉浩志
Liu, Hao-Chih
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 122
中文關鍵詞: 雙電極掃描探針鋰離子電池界面阻抗量測Li4Ti5O12SEI
外文關鍵詞: Dual electrode scanning probe, Lithium ion battery, Interfacial impedance measurement, Li4Ti5O12, SEI
相關次數: 點閱:142下載:22
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 鋰離子於正、負極界面遷移的反應對於鋰電池的效能及壽命息息相關,以往對於該反應的探討是藉由量測整個電池的阻抗來進行分析,但因為涉及的界面反應眾多,因此無法有效獨立各界面的貢獻。本研究利用自行開發可表面分析的雙電極掃描探針 (dual-electrode scanning probe, DESP)與縱向阻抗量測的單極探針,對鋰鈦氧 (Li4Ti5O12) 半電池進行界面阻抗分析,藉此將各層界面對整個電池的貢獻分離。
    DESP透過兩針頭將電流侷限於鋰鈦氧表面,探討電極隨著循環反應的阻抗變化,從等效電路的擬合成功將活性材 (active material) 的貢獻從電極中獨立。量測結果顯示活性材阻抗在前6次循環會因為電極活化的現象而逐步下降,再於後續循環因電極衰退而上升。該現象與半電池在不同循環狀態下的電荷轉移阻抗變化相同,推論是造成電池活化的主要反應。
    在半電池反應時鋰金屬會於表面生成一層成分複雜的固態電解質界面 (solid electrolyte interface,SEI) ,其結構組成與穩定性亦是造成電池衰退的重要因素。為了解SEI各層組成與阻抗之關聯性,本實驗透過化學分析電子光譜儀 (ESCA)鑑定SEI縱深成分,再以單極探針對SEI表面微區加工,針對不同組成的SEI進行縱向的阻抗分析。藉由ESCA分析結果的輔助,解析SEI各層成分對阻抗變化的貢獻,結果顯示SEI阻抗除了因厚度增加而上升之外,位於表層較薄的碳化物相比於內部較厚的氧化層是造成SEI阻抗遽增的主要原因。此外,在加工的過程中也觀察到SEI的去除並非均勻地層層向下,該現象是因各層的硬度不同所致,所觀察的硬度由小而大分別對應到最外層的多孔有機物而至內層的無機物。
    本實驗以探針阻抗為基礎的量測技術對鋰離子電池界面進行分析,並利用微區加工進一步對SEI各層阻抗進行分離,上述技術的建立成功為成分複雜與非均勻組成的系統提供一個微觀的分析方式。

    With the knowledge of the interfacial reactions between the electrolyte and electrodes, the mechanism of the lithium ion batteries (LIB) can be understood in detail. Researchers had studied the interfacial reactions by measuring the impedance of the whole cell. However, this information is related to several interfaces inside the cell, which makes it difficult to distinguish the impedance contributions. In this study, the impedance contribution of individual electrodes material was examined. A self-designed dual-electrode scanning probe (DESP) and local impedance measurement (LIM) of commercial AFM probes were adapted for the half-cell configuration.
    Combining the DESP and the analysis method, the impedance of the active material could be distinguished from the Li4Ti5O12 (LTO) electrode. It is found that the electrode is activated initially and starts to decay after the sixth cycling, which results in the decrease but then increase in impedance. The same trend was also observed for the charge transfer resistance of the LTO half-cell, which shows that the activation of LTO indeed dominates cell performance. Except for the impedance, the composition and stability of the solid electrolyte interface (SEI) formed on the lithium foil during cycling, were also related to the decay of the cell. By scratching the SEI and analyzing the depth profiling of Electron Spectroscopy for Chemical Analysis (ESCA), the impedance contribution of each SEI layer could be measured. The results showed that positive correlation between the impedance and thickness of SEI, and the carbide layer among SEI played a significant role in the increasing impedance rather than the oxide layer. Besides, the removal depth of the SEI during each scratching was different with the same scratching parameters, which was due to the differences in hardness of each SEI layer.
    In this work, the interface reactions of LIB were studied and the impedance of each layer was characterized. With the application of the techniques used in the experiment, we provide a way for analyzing the heterogeneous and complex composite materials.

    中文摘要 I Extended abstract III 致謝 XVIII 目錄 XIX 表目錄 XXI 圖目錄 XXII 第一章緒論 1 1-1 前言 1 1-2 研究動機與目的 3 第二章文獻回顧 4 2-1 尖晶石Li4Ti5O12負極材料之性質 4 2-2 EIS技術應用於鋰離子電池界面之分析 11 2-3 原子力顯微鏡應用於鋰離子電池界面之分析 15 2-4 雙電極掃描探針之開發與微區電性量測分析 20 第三章研究方法與實驗架構 24 3-1 實驗儀器與藥品 24 3-1-1 實驗儀器 24 3-1-2 實驗藥品 25 3-2 實驗方法 26 3-3 雙電極掃描探針設計之改良 28 3-4 雙電極掃描探針製程之改良 30 3-5 鋰離子電池之組裝與充放電極片之製備 33 第四章雙電極掃描探針之改良與測試 34 4-1 雙電極掃描探針製程 34 4-1-1 懸臂樑之性質模擬與濕式蝕刻結果 34 4-1-2 絕緣氧化層的成長與面積定義 39 4-1-3 Lift-off製程與阻值探討 44 4-1-4 背面蝕刻製程與DESP製作成果 51 4-2 新版雙電極掃描探針之裝載與量測功能測試 54 4-2-1 客製化載具設計與加工 54 4-2-2 探針裝載之固定片與導線設計 58 4-2-3 雙極探針裝載與阻抗量測系統 63 第五章鋰離子電池界面阻抗技術量測之結果與討論 65 5-1 客製化簡易型手套箱氣氛控制系統架設 65 5-2 鋰離子電池界面阻抗量測 71 5-2-1 鈕扣型電池之電化學阻抗分析 71 5-2-2 雙電極掃描探針應用於Li4Ti5O12負極材界面之阻抗量測 74 5-2-3 單極式探針應用於Li4Ti5O12負極材界面之阻抗量測 79 5-2-4 鋰金屬表面形貌與微結構分析 82 5-2-5 單極式探針應用於鋰金屬界面之阻抗量測 87 5-2-6 鋰金屬界面之化學成分分析 91 5-2-7 鋰金屬界面之微區縱深阻抗分析 106 5-2-8 微區阻抗量測系統應用於鋰離子電池界面分析之討論 114 第六章結論與未來展望 115 6-1 結論 115 6-2 未來展望 117 第七章參考文獻 118

    [1] T. Ohzuku, A. Ueda, N. Yamamoto, "Zero-strain insertion material of Li[Li1/3Ti5/3]O4 for rechargeable lithium cells," J. Electrochem. Soc., 142 (1995) 1431-1435.
    [2] K. Zaghib, M. Simoneau, M. Armand, M. Gauthier, "Electrochemical study of Li4Ti5O12 as negative electrode for Li-ion polymer rechargeable batteries," Journal of Power Sources, 81–82 (1999) 300-305.
    [3] K. Nakahara, R. Nakajima, T. Matsushima, H. Majima, "Preparation of particulate Li4Ti5O12 having excellent characteristics as an electrode active material for power storage cells," Journal of Power Sources, 117 (2003) 131-136.
    [4] T.-F. Yi, L.-J. Jiang, J. Shu, C.-B. Yue, R.-S. Zhu, H.-B. Qiao, "Recent development and application of Li4Ti5O12 as anode material of lithium ion battery," Journal of Physics and Chemistry of Solids, 71 (2010) 1236-1242.
    [5] J.M. Feckl, K. Fominykh, M. Doblinger, D. Fattakhova-Rohlfing, T. Bein, "Nanoscale porous framework of lithium titanate for ultrafast lithium insertion," Angewandte Chemie (International ed. in English), 51 (2012) 7459-7463.
    [6] M. Wagemaker, D.R. Simon, E.M. Kelder, J. Schoonman, C. Ringpfeil, U. Haake, D. Lützenkirchen-Hecht, R. Frahm, F.M. Mulder, "A Kinetic Two-Phase and Equilibrium Solid Solution in Spinel Li4+xTi5O12," Advanced Materials, 18 (2006) 3169-3173.
    [7] C. Kim, N.S. Norberg, C.T. Alexander, R. Kostecki, J. Cabana, "Mechanism of Phase Propagation During Lithiation in Carbon-Free Li4Ti5O12 Battery Electrodes," Advanced Functional Materials, 23 (2013) 1214-1222.
    [8] M. Wagemaker, E.R.H. van Eck, A.P.M. Kentgens, F.M. Mulder, "Li-Ion Diffusion in the Equilibrium Nanomorphology of Spinel Li4+xTi5O12," The Journal of Physical Chemistry B, 113 (2009) 224-230.
    [9] C.H. Chen, J.T. Vaughey, A.N. Jansen, D.W. Dees, A.J. Kahaian, T. Goacher, M.M. Thackeray, "Studies of Mg-substituted Li4-xMgxTi5O12 spinel electrodes (0 <x < 1) for lithium batteries," J. Electrochem. Soc., 148 (2001) A102-A104.
    [10] L. Kavan, J. Prochazka, T.M. Spitler, M. Kalbac, M.T. Zukalova, T. Drezen, M. Gratzel, "Li insertion into Li4Ti5O12 (Spinel) Charge capability vs. particle size in thin-film electrodes," J. Electrochem. Soc., 150 (2003) A1000-A1007.
    [11] Y.M. Lee, J.Y. Lee, H.T. Shim, J.K. Lee, J.K. Park, "SEI layer formation on amorphous si thin electrode during precycling," J. Electrochem. Soc., 154 (2007) A515-A519.
    [12] I. Uchida, H. Fujiyoshi, S. Waki, "Microvoltammetric studies on single particles of battery active materials," Journal of Power Sources, 68 (1997) 139-144.
    [13] C.H. Chen, J. Liu, K. Amine, "Symmetric cell approach and impedance spectroscopy of high power lithium-ion batteries," Journal of Power Sources, 96 (2001) 321-328.
    [14] C.H. Chen, J. Liu, K. Amine, "Symmetric cell approach towards simplified study of cathode and anode behavior in lithium ion batteries," Electrochemistry Communications, 3 (2001) 44-47.
    [15] A. Deschanvres, B. Raveau, Z. Sekkal, Materials Research Bulletin, 6 (1971) 699-704.
    [16] D.W. Murphy, R.J. Cava, S.M. Zahurak, A. Santoro, "Ternary LixTiO2 phases from insertion reactions," Solid State Ionics, 9 (1983) 413-417.
    [17] K.M. Colbow, J.R. Dahn, R.R. Haering, "Structure and electrochemistry of the spinel oxides LiTi2O4 and Li4/3Ti5/3O4," Journal of Power Sources, 26 (1989) 397-402.
    [18] M. Wagemaker, A. Van Der Ven, D. Morgan, G. Ceder, F.M. Mulder, G.J. Kearley, "Thermodynamics of spinel LixTiO2 from first principles," Chemical Physics, 317 (2005) 130-136.
    [19] F. Ronci, P. Reale, B. Scrosati, S. Panero, V. Rossi Albertini, P. Perfetti, M. di Michiel, J.M. Merino, "High-Resolution In-Situ Structural Measurements of the Li4/3Ti5/3O4 “Zero-Strain” Insertion Material," The Journal of Physical Chemistry B, 106 (2002) 3082-3086.
    [20] S. Scharner, W. Weppner, P. Schmid-Beurmann, "Evidence of two-phase formation upon lithium insertion into the Li1.33Ti1.67O4 spinel," J. Electrochem. Soc., 146 (1999) 857-861.
    [21] H. Wu, Y. Cui, "Designing nanostructured Si anodes for high energy lithium ion batteries," Nano Today, 7 (2012) 414-429.
    [22] N. Nitta, F. Wu, J.T. Lee, G. Yushin, "Li-ion battery materials: present and future," Materials Today, 18 (2015) 252-264.
    [23] J. Ma, C. Wang, S. Wroblewski, "Kinetic characteristics of mixed conductive electrodes for lithium ion batteries," Journal of Power Sources, 164 (2007) 849-856.
    [24] W. Lu, I. Belharouak, J. Liu, K. Amine, "Electrochemical and thermal investigation of Li4/3Ti5/3O4 spinel," J. Electrochem. Soc., 154 (2007) A114-A118.
    [25] N. Takami, K. Hoshina, H. Inagaki, "Lithium Diffusion in Li4/3Ti5/3O4 Particles during Insertion and Extraction," J. Electrochem. Soc., 158 (2011) A725-A730.
    [26] N. Takami, H. Inagaki, T. Kishi, Y. Harada, Y. Fujita, K. Hoshina, "Electrochemical Kinetics and Safety of 2-Volt Class Li-Ion Battery System Using Lithium Titanium Oxide Anode," J. Electrochem. Soc., 156 (2009) A128-A132.
    [27] S. Jiang, B. Zhao, Y. Chen, R. Cai, Z. Shao, "Li4Ti5O12 electrodes operated under hurdle conditions and SiO2 incorporation effect," Journal of Power Sources, 238 (2013) 356-365.
    [28] B. Zhao, R. Ran, M. Liu, Z. Shao, "A comprehensive review of Li4Ti5O12-based electrodes for lithium-ion batteries: The latest advancements and future perspectives," Materials Science and Engineering: R: Reports, 98 (2015) 1-71.
    [29] L. Shen, C. Yuan, H. Luo, X. Zhang, S. Yang, X. Lu, "In situ synthesis of high-loading Li4Ti5O12-graphene hybrid nanostructures for high rate lithium ion batteries," Nanoscale, 3 (2011) 572-574.
    [30] Y. Yang, B. Qiao, X. Yang, L. Fang, C. Pan, W. Song, H. Hou, X. Ji, "Lithium Titanate Tailored by Cathodically Induced Graphene for an Ultrafast Lithium Ion Battery," Advanced Functional Materials, 24 (2014) 4349-4356.
    [31] X. Jia, Y. Kan, X. Zhu, G. Ning, Y. Lu, F. Wei, "Building flexible Li4Ti5O12/CNT lithium-ion battery anodes with superior rate performance and ultralong cycling stability," Nano Energy, 10 (2014) 344-352.
    [32] 蕭光哲, "快速充放電鋰離子電池負極材料," 工業材料雜誌, 256 (2008).
    [33] 廖世傑, "快速充電鋰電池負極材料技術," 工業材料雜誌, 267 (2009).
    [34] N. Ogihara, S. Kawauchi, C. Okuda, Y. Itou, Y. Takeuchi, Y. Ukyo, "Theoretical and Experimental Analysis of Porous Electrodes for Lithium-Ion Batteries by Electrochemical Impedance Spectroscopy Using a Symmetric Cell," J. Electrochem. Soc., 159 (2012) A1034-A1039.
    [35] D. Li, P. He, H. Li, H. Zhou, "An unsymmetrical lithium-ion pathway between charge and discharge processes in a two-phase stage of Li4Ti5O12," Physical chemistry chemical physics : PCCP, 14 (2012) 9086-9091.
    [36] F. Xu, B. Beak, C. Jung, "In situ electrochemical studies for Li+ ions dissociation from the LiCoO2 electrode by the substrate-generation/tip-collection mode in SECM," Journal of Solid State Electrochemistry, 16 (2011) 305-311.
    [37] E. Ventosa, W. Schuhmann, "Scanning electrochemical microscopy of Li-ion batteries," Physical Chemistry Chemical Physics, 17 (2015) 28441-28450.
    [38] A.N. Morozovska, E.A. Eliseev, N. Balke, S.V. Kalinin, "Local probing of ionic diffusion by electrochemical strain microscopy: Spatial resolution and signal formation mechanisms," Journal of Applied Physics, 108 (2010) 053712.
    [39] BalkeN, JesseS, A.N. Morozovska, EliseevE, D.W. Chung, KimY, AdamczykL, R.E. Garcia, DudneyN, S.V. Kalinin, "Nanoscale mapping of ion diffusion in a lithium-ion battery cathode," Nat Nano, 5 (2010) 749-754.
    [40] 程睿騰, "雙電極掃描探針之開發與微區電性量測之應用," Master, MSE, NCKU, 2013.
    [41] 鄭毓倫, "雙電極掃描探針之改良並應用於鋰離子電池材料之界面電化學分析," Master, MSE, NCKU, (2014).
    [42] P.A. Alvi, "MEMS Pressure Sensors: Fabrication and Process Optimization," (2012).
    [43] S. Franssila, "Introduction to Microfabrication, 2nd Edition," (2010).
    [44] V.Kelley, M. Wright, "Dimension icon with ScanAsyst Instruction Manual," Bruker, (2011).
    [45] M. Kitta, T. Akita, Y. Maeda, M. Kohyama, "Study of Surface Reaction of Spinel Li4Ti5O12 during the First Lithium Insertion and Extraction Processes Using Atomic Force Microscopy and Analytical Transmission Electron Microscopy," Langmuir, 28 (2012) 12384-12392.
    [46] N. Schweikert, H. Hahn, S. Indris, "Cycling behaviour of Li/Li4Ti5O12 cells studied by electrochemical impedance spectroscopy," Physical chemistry chemical physics : PCCP, 13 (2011) 6234-6240.
    [47] X.-B. Cheng, R. Zhang, C.-Z. Zhao, F. Wei, J.-G. Zhang, Q. Zhang, "A Review of Solid Electrolyte Interphases on Lithium Metal Anode," Advanced Science, 3 (2016).
    [48] C. Hitz, A. Lasia, "Experimental study and modeling of impedance of the her on porous Ni electrodes," Journal of Electroanalytical Chemistry, 500 (2001) 213-222.
    [49] Z. Kerner, T. Pajkossy, "Impedance of rough capacitive electrodes: the role of surface disorder," Journal of Electroanalytical Chemistry, 448 (1998) 139-142.
    [50] M. Durbha, M.E. Orazem, B. Tribollet, "A Mathematical Model for the Radially Dependent Impedance of a Rotating Disk Electrode," J. Electrochem. Soc., 146 (1999) 2199-2208.
    [51] J.B. Jorcin, M.E. Orazem, N. Pébère, B. Tribollet, "CPE analysis by local electrochemical impedance spectroscopy," Electrochimica Acta, 51 (2006) 1473-1479.
    [52] D. Lu, Y. Shao, T. Lozano, W.D. Bennett, G.L. Graff, B. Polzin, J. Zhang, M.H. Engelhard, N.T. Saenz, W.A. Henderson, P. Bhattacharya, J. Liu, J. Xiao, "Failure Mechanism for Fast-Charged Lithium Metal Batteries with Liquid Electrolytes," Advanced Energy Materials, 5 (2015).
    [53] R. Younesi, M. Hahlin, M. Roberts, K. Edström, "The SEI layer formed on lithium metal in the presence of oxygen: A seldom considered component in the development of the Li–O2 battery," Journal of Power Sources, 225 (2013) 40-45.
    [54] W. Xu, J. Wang, F. Ding, X. Chen, E. Nasybulin, Y. Zhang, J.-G. Zhang, "Lithium metal anodes for rechargeable batteries," Energy and Environmental Science, 7 (2014) 513-537.
    [55] D. Aurbach, I. Weissman, A. Zaban, O. Chusid, "Correlation between surface chemistry, morphology, cycling efficiency and interfacial properties of Li electrodes in solutions containing different Li salts," Electrochimica Acta, 39 (1994) 51-71.
    [56] D. Aurbach, O. Youngman, P. Dan, "The electrochemical behavior of 1,3-dioxolane—LiClO4 solutions—II. Contaminated solutions," Electrochimica Acta, 35 (1990) 639-655.
    [57] D. Aurbach, A. Zaban, Y. Gofer, Y.E. Ely, I. Weissman, O. Chusid, O. Abramson, "Recent studies of the lithium-liquid electrolyte interface Electrochemical, morphological and spectral studies of a few important systems," Journal of Power Sources, 54 (1995) 76-84.
    [58] Y.S. Cohen, Y. Cohen, D. Aurbach, "Micromorphological Studies of Lithium Electrodes in Alkyl Carbonate Solutions Using in Situ Atomic Force Microscopy," The Journal of Physical Chemistry B, 104 (2000) 12282-12291.
    [59] S. Shiraishi, K. Kanamura, Z.-I. Takehara, "Influence of initial surface condition of lithium metal anodes on surface modification with HF," Journal of Applied Electrochemistry, 29 (1999) 867-879.
    [60] Y. Zhang, J. Qian, W. Xu, S.M. Russell, X. Chen, E. Nasybulin, P. Bhattacharya, M.H. Engelhard, D. Mei, R. Cao, F. Ding, A.V. Cresce, K. Xu, J.-G. Zhang, "Dendrite-Free Lithium Deposition with Self-Aligned Nanorod Structure," Nano Letters, 14 (2014) 6889-6896.
    [61] A. Schechter, D. Aurbach, H. Cohen, "X-ray Photoelectron Spectroscopy Study of Surface Films Formed on Li Electrodes Freshly Prepared in Alkyl Carbonate Solutions," Langmuir, 15 (1999) 3334-3342.
    [62] K. Kanamura, H. Takezawa, S. Shiraishi, Z.i. Takehara, "Chemical Reaction of Lithium Surface during Immersion in LiClO4 or LiPF6 /  DEC  Electrolyte," J. Electrochem. Soc., 144 (1997) 1900-1906.
    [63] G. Nazri, R.H. Muller, "Composition of Surface Layers on Li Electrodes in PC, LiClO4 of Very Low Water Content," J. Electrochem. Soc., 132 (1985) 2050-2054.
    [64] G. Zheng, S.W. Lee, Z. Liang, H.-W. Lee, K. Yan, H. Yao, H. Wang, W. Li, S. Chu, Y. Cui, "Interconnected hollow carbon nanospheres for stable lithium metal anodes," Nat Nano, 9 (2014) 618-623.
    [65] H.S. Shin, "Degradation mechanisms of electrode/electrolyte interfaces in Li-ion batteries," Doctor, ME, Michigan, (2015).

    下載圖示 校內:2021-06-24公開
    校外:2021-06-25公開
    QR CODE