簡易檢索 / 詳目顯示

研究生: 胡峻誠
Hu, Chun-Cheng
論文名稱: 基於深度學習的測試壓縮分析器
Deep Learning Based Test Compression Analyzer
指導教授: 李昆忠
Lee, Kuen-Jong
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 英文
論文頁數: 36
中文關鍵詞: 測試壓縮深度學習可測試設計
外文關鍵詞: Test compression, Deep learning, DFT
相關次數: 點閱:96下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著電路複雜性和測試資料量的增加,EDT測試壓縮技術已在工業中得到廣泛採用,以降低測試成本。這種可測試設計(DFT)方法的挑戰之一是確定一組最佳參數,例如掃描鏈的數量、掃描通道數量與功率預算…等,使其能夠在滿足各種其他約束的同時達到最高的測試覆蓋率與最小的測試資料量。為了快速實現最佳壓縮配置,在這篇論文中,我們使用TensorFlow作為深度學習的框架,以評估在給定的電路參數集下採用EDT時電路的測試覆蓋率和測試資料量。根據估計的資料,還可以預測最佳的測試架構。與當前使用的反覆試驗方法相比,這是一種創新且更有效的方法。為了展示TensorFlow作為深度學習的框架的方法相對於當前使用的實用程序的優勢,我們提供了八個業界電路的實驗數據。

    With the increase in design complexity and test data volume, compressed tests together with on-chip test decompression hardware such as Embedded Deterministic Test (EDT) are widely used in industry to reduce test cost. One of the challenges of such Design-for-Test (DFT) technology is to determine a set of optimal parameters such as the number of scan chains, scan channels, power budget, etc. such that it can reach the highest test coverage with a minimum amount of test data volume whilst satisfying various other constraints. To achieve the optimal compression configuration quickly, in this thesis deep learning technology based on TensorFlow is explored to estimate the test coverage and the data volume for a design when employing EDT under a given set of circuit parameters. Based on the estimated data, the optimal test architecture is also predicted, yielding a more efficient approach compared to the currently used trial-and-error methods. To demonstrate the advantages of our deep learning approach over the currently used utility, we present experimental data for eight industrial designs.

    CHAPTER 1 Introduction 1 CHAPTER 2 Background 5 CHAPTER 3 Compression Configuration Selection flow 9 3.1 Overview of EDT Configuration Selection Flow 9 3.2 Training Data 10 3.3 Design Feature Extraction 11 3.4 Training Parameters and Techniques 13 3.4.1 Learning Rate 13 3.4.2 Dynamic Batch Size 13 3.4.3 Number of Retries 14 3.4.4 Cost Function 16 3.4.5 Order of Training Data 17 3.4.6 Standard Normalization 19 3.4.7 Overfitting 21 CHAPTER 4 Experimental Results 23 4.1 Prediction Results 24 4.2 Compared with Compression Predictor 27 4.3 Standard Normalization Issue 30 4.4 Compared with the best case from 250 train data 32 CHAPTER 5 Conclusions 33 References 34

    [1] F. Hapke, et al., “Cell-Aware Test,” IEEE TCAD, Vol. 33, No. 9, September 2014.
    [2] N.A. Touba, “Survey of test vector compression techniques,” IEEE Design & Test of Computers, vol. 23, pp. 294-303, July-Aug. 2006.
    [3] R. Kapur, et al., “Historical perspective on scan compression,” IEEE Design & Test, vol. 25, No. 2, pp. 114-120, 2008.
    [4] K-J. Lee, et al., “Using a single input to support multiple scan chains,” Proc. ICCAD, 1998, pp. 74-78.
    [5] I. Hamzaoglu and J.H. Patel, “Reducing test application time for full scan embedded cores,” Proc. Symp. Fault-Tolerant Computing, 1999, pp. 260-267.
    [6] L.-T. Wang, et al., “VirtualScan: test compression technology using combinational logic and one-pass ATPG,” IEEE Design & Test, vol. 25, No. 2, pp. 122-130, 2008.
    [7] A. Chandra, et al., “Scalable Adaptive Scan (SAS),” Proc. DATE, 2009.
    [8] I. Bayraktaroglu and A. Orailoglu, “Test volume and application time reduction,” Proc. DAC, 2001, pp. 151-155.
    [9] S. Mitra and K.S. Kim, “XPAND: An efficient test stimulus compression technique,” IEEE Trans. Comput., vol. 55, pp.163-173, Feb. 2006.
    [10] B. Koenemann, “LFSR-coded test patterns for scan designs,” Proc. ETC, 1991, pp. 237-242.
    [11] S. Hellebrand, et al., “Built-in test for circuits with scan based on reseeding of multiple-polynomial linear feedback shift registers,” IEEE Trans. Com., vol. 44, pp. 223-233, Feb. 1995.
    [12] J. Rajski, et al., “Embedded deterministic test,” IEEE TCAD, vol. 23, pp.776-792, 2004.
    [13] J. Rajski, et al., “Embedded deterministic test for low cost manufacturing,” IEEE Design & Test, vol. 20, pp. 58-66, 2003.
    [14] J. Rajski et al., “Method and Apparatus for Selectively Compacting Test Responses,” US Patent 7,805,649
    [15] J. Rajski et al., “Decompressors for Low Power Decompression of Test Patterns,” US Patent 8,301,945.
    [16] Y. Huang, et al., “Test Compression Improvement with EDT Channel Sharing in SoC Designs,” IEEE North Atlantic Test Workshop (NATW), 2014.
    [17] X. Liu, et al., “Case Study of Testing a SoC Design with Mixed EDT Channel Sharing and Channel Broadcasting,” IEEE North Atlantic Test Workshop (NATW), 2016.
    [18] “Tessent® Shell Reference Manual”, Mentor, A Siemens Business, 2018.
    [19] D.B. Lenat and R.V. Guha, "Building Large Knowledge-Based Systems; Representation and Inference in the Cyc Project," 1989, ISBN: 0201517523.
    [20] Y. Huang, et al., “Scan Chain Diagnosis Based on Unsupervised Machine Learning,” Proc. ATS, 2017, pp.220-225.
    [21] H. Ma et al., "A Case Study of Testing Strategy for AI SoC," IEEE International Test Conference in Asia (ITC-Asia), 2019.
    [22] Z. Li et al., "Test-Cost Optimization in a Scan-Compression Architecture Using Support-Vector Regression," Proc VTS, 2017.
    [23] L.H. Goldstein and E.L. Thigpen, "SCOAP: Sandia Controllability/Observability Analysis Program," in Proc DAC, pp.190-196, June 1980.
    [24] L. Balles, J. Romero, and P. Hennig. “Coupling adaptive batch sizes with learning rates,” in UAI, 2017.

    無法下載圖示 校內:2025-07-25公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE