簡易檢索 / 詳目顯示

研究生: 吳明家
Wu, Ming-Jia
論文名稱: 強化諧波抑制能力之無線電能傳輸系統設計於電動載具雙向供電應用
Design of Wireless Power Transfer System with Harmonic Suppression for Bidirectional Charging of Electric Vehicles
指導教授: 黃世杰
Huang, Shyh-Jier
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 86
中文關鍵詞: 雙向無線電能傳輸諧波抑制補償架構
外文關鍵詞: Bidirectional wireless power transfer, harmonic suppression, compensation architecture
相關次數: 點閱:89下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文旨在研發一套具有強化諧波抑制能力之雙向無線電能傳輸系統,有效達成電網供電至車輛以及車輛供電至電網之雙向充放電,以提升整體能源使用,而由於在無線電能傳輸系統中,如欲提升諧波抑制能力,必須增加傳能線圈大小或提升系統操作頻率,較難配合車輛有限充電空間與頻率規範。因此,本文融入LCC-S補償架構,其中一次側包含一補償電感及兩補償電容,二次側則加入串聯補償電容,進而提出一套改良型諧振電路設計方式,以強化系統諧波抑制能力,同時本文並分析系統諧振輸出特性,進而制訂回授控制機制,以提高整體系統穩定性。至為驗證所提諧振電路設計方式之可行性,本論文已建置一套雙向無線傳能系統進行功能實測,測試結果顯示本系統於各測試情境下,皆可維持穩定輸出,並兼具高傳輸效率,可提供無線充電與電動載具相關產業研發參考。

    This thesis is aimed to develop a bidirectional wireless power transfer system with harmonic suppression capability, which is effective for both grid-to-vehicle and vehicle-to-grid applications. To enhance the high-order harmonic suppression in wireless power transfer systems, the size of transmission coils or operating frequency is known to increase. However, considering the limited charging space along with allowable frequencies, existent methods are facing challenges.
    Therefore, this thesis includes a LCC-S compensation method where the primary side consisting of an inductor and two capacitors and the secondary side consisting of a series-compensation capacitor, hence developing an improved resonant circuit to enhance the harmonic suppression capability. Meanwhile, the study also investigates resonant characteristics, by which the feedback control mechanism is formulated to increase the overall stability. To verify the feasibility of this resonant design method, this thesis has realized a hardware circuit of the bidirectional wireless power transfer system with the measurement of circuit functions. Test results show that the system prototype can maintain the output voltage with high transmission efficiency under different test conditions. The outcome of this study may serve as beneficial references for research and development of electric vehicles and wireless power transmission industries.

    中文摘要 I 英文摘要 II 致謝 V 目錄 VI 表目錄 IX 圖目錄 X 符號目錄 XIV 第一章 緒論 1 1-1 研究背景及文獻探討 1 1-2 研究目的及方法 2 1-3 內容大綱 4 第二章 無線電能傳輸電路設計與分析 6 2-1 前言 6 2-2 諧振補償電路設計 7 2-2-1 感應線圈等效電路模型分析 8 2-2-2 原LCC-S諧振電路設計 9 2-2-3 改良型LCC-S諧振電路設計 12 2-3 橋式電路架構分析 14 2-3-1 半橋式換流器分析 14 2-3-2 半橋式倍壓整流電路分析 16 2-3-3 全橋式換流器分析 17 2-3-4 全橋式整流濾波電路分析 18 2-4 系統架構電路分析 19 2-4-1 G2V模式之系統電路架構 19 2-4-2 V2G模式之系統電路架構 22 第三章 系統軟硬體設計與規劃 26 3-1 前言 26 3-2 感應線圈耦合係數分析 27 3-3 無線電能傳輸系統主電路架構 29 3-3-1 橋式換流器 30 3-3-2 系統諧振電路設計與分析 31 3-4 控制電路設計 38 3-4-1 微控制器與藍芽通訊模組簡介 39 3-4-2 功率開關驅動電路簡介 39 3-4-3 電壓回授偵測電路 40 3-5 控制策略設計 41 3-5-1 G2V模式控制策略 41 3-5-2 V2G模式控制策略 45 第四章 系統實驗結果 50 4-1 前言 50 4-2 橋式換流器輸出測試 51 4-2-1 G2V模式之半橋換流器輸出測試 51 4-2-2 V2G模式之全橋換流器輸出測試 56 4-3系統輸出測試 60 4-3-1 G2V模式之系統輸出測試 60 4-3-2 V2G模式之系統輸出測試 64 4-4 控制策略測試 68 4-4-1 G2V模式之系統輸入變化測試 69 4-4-2 G2V模式之線圈錯位測試 71 4-4-3 V2G模式之系統輸入變化測試 74 4-4-4 V2G模式之線圈錯位測試 76 第五章 結論與未來研究方向 80 5-1 結論 80 5-2 未來研究方向 81 參考文獻 82

    [1]P. S. Riehl, A. Satyamoorthy, H. Akram, Y. C. Yen, J. C. Yang, B. Juan, C. M. Lee, F. C. Lin, V. Muratov, W. Plumb, and P. F. Tustin, “Wireless Power Systems for Mobile Devices Supporting Inductive and Resonant Operating Modes,” IEEE Transactions on Microwave Theory and Techniques, Vol. 63, No. 3, pp. 780-790, March 2015.
    [2]J. Park, D. Kim, K.Hwang, H. H. Park, S. I. Kwak, J. H. Kwon, and S. Ahn, “A Resonant Reactive Shielding for Planar Wireless Power Transfer System in Smartphone Application,” IEEE Transactions on Electromagnetic Compatibility, Vol. 59, No. 2, pp. 695-703, April 2017.
    [3]K. Li, C. Yuen, B. Kusy, R. Jurdak, A. Ignjatovic, S. S. Kanhere, and S. Jha, “Fair Scheduling for Data Collection in Mobile Sensor Networks with Energy Harvesting,” IEEE Transactions on Mobile Computing, Vol. 18, No. 6, pp. 1274-1287, June 2019.
    [4]Li, H. Liu, H. Zhang, and W. Xue, “Efficient Wireless Power Transfer Integrating with Metasurface for Biological Applications,” IEEE Transactions on Industrial Electronics, Vol. 65, No. 4, pp. 3230-3239, April 2018.
    [5]N. Ha-Van and C. Seo “Modeling and Experimental Validation of a Butterfly-Shaped Wireless Power Transfer in Biomedical Implants,” IEEE Access, Vol. 7, pp. 107225-107233, August 2019.
    [6]M. Machnoor, E. S. G. Rodríguez, P. Kosta, and G. Lazzi, “Analysis and Design of a 3-Coil Wireless Power Transmission System for Biomedical Applications,” IEEE Transactions on Antennas and Propagation, Vol. 67, No. 8, pp. 5012-5024, August 2019.
    [7]A. Zaheer, G. A. Covic, and D. Kacprzak, “A Bipolar Pad in a 10-kHz 300-W Distributed IPT System for AGV Applications,” IEEE Transactions on Industrial Electronics, Vol. 61, No. 7, pp. 3288-3301, July 2014.
    [8]A. Kamineni, M. J. Neath, G. A. Covic, and J. T. Boys, “A Mistuning-Tolerant and Controllable Power Supply for Roadway Wireless Power Systems,” IEEE Transactions on Power Electronics, Vol. 32, No. 9, pp. 6689-6699, September 2017.
    [9]A. A. S. Mohamed, C. R. Lashway, and O. Mohammed, “Modeling and Feasibility Analysis of Quasi-Dynamic WPT System for EV Applications,” IEEE Transactions on Transportation Electrification, Vol. 3, No. 2, pp. 343-353, June 2017.
    [10]W. Zhang and C. C. Mi, “Compensation Topologies of High-Power Wireless Power Transfer Systems,” IEEE Transactions on Vehicular Technology, Vol. 65, No. 6, pp. 4768-4778, June 2016.
    [11]Z. Miao, D. Liu, and C. Gong, “Efficiency Enhancement for an Inductive Wireless Power Transfer System by Optimizing the Impedance Matching Networks, ” IEEE Transactions on Biomedical Circuits and Systems, Vol. 11, No. 5, pp. 1160-1170, October 2017.
    [12]X. Dai, Y. Huang, and Y. Li, “Topology Comparison and Selection of Wireless Power Transfer System and Parameter Optimization for High Voltage Gain,” IEEE PELS Workshop on Emerging Technologies: Wireless Power Transfer, pp. 1-5, Chongqing, China, May 2017.
    [13]S. Weearsinghe, D. J. Thrimawithana, and U. K. Madawala, “Modeling Bidirectional Contactless Grid Interfaces with a Soft DC-Link,” IEEE Transactions on Power Electronics, Vol. 30, No. 7, pp. 3528-3541, July 2015.
    [14]A. A. S. Mohamed and O. Mohammed, “Physics-Based Co-Simulation Platform with Analytical and Experimental Verification for Bidirectional IPT System in EV Applications,” IEEE Transactions on Vehicular Technology, Vol. 67, No. 1, pp. 275-284, January 2018.
    [15]T. Tan, K. Chen, Y. Jiang, Q. Lin, L. Yuan, and Z. Zhao, “A Bidirectional Wireless Power Transfer System Control Strategy Independent of Real-Time Wireless Communication,” IEEE Transactions on Industry Applications, Vol. 56, No. 2, pp. 1587-1598, March-April 2020.
    [16]A. A. S. Mohamed, A. Berzoy, F. G. N. de Almeida, and O. Mohammed, “Modeling and Assessment Analysis of Various Compensation Topologies in Bidirectional IWPT System for EV Applications,” IEEE Transactions on Industry Applications, Vol. 53, No. 5, pp. 4973-4984, September-October 2017.
    [17]M. Li, G. Yao, L. Zhou, and Z. Yin, “Harmonic Analysis of Bidirectional LCL-IPT System,” IEEE 2nd Annual Southern Power Electronics Conference, pp. 1-5, Auckland, New Zealand, December 2016.
    [18]S. Samanta, A. K. Rathore and D. J. Thrimawithana, “Bidirectional Current-Fed Half-Bridge (C) (LC)-(LC) Configuration for Inductive Wireless Power Transfer System,” IEEE Transactions on Industry Applications, Vol. 53, No. 4, pp. 4053-4062, July-August 2017.
    [19]J. Zhang, Z. He, A. Luo, Y. Liu, G. Hu, X. Feng, and L. Wang, “Total Harmonic Distortion and Output Current Optimization Method of Inductive Power Transfer System for Power Loss Reduction,” IEEE Access, Vol. 8, pp. 4724-4736, January 2020.
    [20]F. Lu, Y. Zhang, C. Zhu, L. Diao, M. Gong, W. Zhang, and C. Mi, “A Low-Voltage and High-Current Inductive Power Transfer System With Low Harmonics for Automatic Guided Vehicles,” IEEE Transactions on Vehicular Technology, Vol. 68, No. 4, pp. 3351-3360, April 2019.
    [21]Y. Yao, Y. Wang, X. Liu, F. Lin, and D. Xu, “A Novel Parameter Tuning Method for a Double-Sided LCL Compensated WPT System With Better Comprehensive Performance,” IEEE Transactions on Power Electronics, Vol. 33, No. 10, pp. 8525-8536, October 2018.
    [22]J. Riedel, D. G. Holmes, B. P. McGrath, and C. Teixeira, “Active Suppression of Selected DC Bus Harmonics for Dual Active Bridge DC–DC Converters,” IEEE Transactions on Power Electronics, Vol. 32, No. 11, pp. 8857-8867, November 2017.
    [23]S. Deilami, “Online Coordination of Plugged-In Electric Vehicles and Optimal Rescheduling of Switched Shunt Capacitors in Smart Grid Considering Battery Charger Harmonics,” IEEE Power and Energy Technology Systems Journal, Vol. 5, No. 4, pp. 148-156, December 2018.
    [24]Y. Yao, Y. Wang, X. Liu, and D. Xu, “Analysis, Design, and Optimization of LC/S Compensation Topology with Excellent Load-Independent Voltage Output for Inductive Power Transfer,” IEEE Transactions on Transportation Electrification, Vol. 4, No. 3, pp. 767-777, September 2018.
    [25]B. Li, G. Zhu, J. Lu, W. Li, G. Ranjith Kumar, and J. Wang, “Output Characteristics of LCC-S Compensation Network and its Optimal Parameters Design in IPT System,” The Journal of Engineering, Vol. 2017, No. 13, pp. 1576-1579, October 2017.
    [26]J. Lu, G. Zhu, W. Li, and B. Li, “Load-Independent ZPA Conditions in Both Constant Current and Constant Voltage Modes of LCC-Series Compensated IPT System,” IEEE Wireless Power Transfer Conference, pp. 1-4, Montreal, Canada, June 2018.
    [27]Y. Chen, H. Zhang, S. Park, and D. Kim, “A Switching Hybrid LCC-S Compensation Topology for Constant Current/Voltage EV Wireless Charging,” IEEE Access, Vol. 7, pp. 133924-133935, September 2019.
    [28]V. Jiwariyavej, T. Imura, and Y. Hori, “Coupling Coefficients Estimation of Wireless Power Transfer System via Magnetic Resonance Coupling Using Information from Either Side of the System,” IEEE Journal of Emerging and Selected Topics in Power Electronics, Vol. 3, No. 1, pp. 191-200, March 2015.
    [29]C2M0080120 Data Sheet, CREE Incorporated, 2015.
    [30]U08A60 Data Sheet, MOSPEC Semiconductor, 2002.
    [31]TMS320F2833x, TMS320F2823x Digital Signal Controllers (DSCs), Texas Instruments Incorporated, 2016.
    [32]BC417143 Data Sheet, Cambridge Silicon Radio Plc., 2007.
    [33]HCPL-3120 Data Sheet, Avago Technologies, 2016.
    [34]TL084CN Data Sheet, Texas Instruments Incorporated, 2014.
    [35]High Voltage DC Electronic Load Datasheet, Prodigit Electronics Co., Ltd. [Online] Available: http://www.prodigit.com/manager_admin/new_file_download.php?Pact=FileDownLoad&Pval=17508

    無法下載圖示 校內:2025-07-01公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE