簡易檢索 / 詳目顯示

研究生: 郭哲勳
Kuo, Che-Hsun
論文名稱: 一個架構精簡並具雜訊壓抑技巧之十位元每秒取樣一億二千萬次的逐漸趨近式類比數位轉換器
A 10-bit 120-MS/s SAR ADC with Compact Architecture and Noise Suppression Technique
指導教授: 張順志
Chang, Soon-Jyh
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 英文
論文頁數: 109
中文關鍵詞: 架構精簡雜訊逐漸趨近式類比至數位轉換器
外文關鍵詞: compact architecture, noise, successive approximation, SAR, analog-to-digital converter, ADC
相關次數: 點閱:121下載:22
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文提出三個應用於逐漸趨近式類比至數位轉換器的電路設計技術,並且基於所提出的技術,實現一個使用九十奈米製程的單通道十位元每秒取樣一億二千萬次的非同步逐漸趨近式類比至數位轉換器。第一個技術為精簡組合電路時序控制,其簡化數位控制電路,節省其動態功率消耗,並去除傳統架構中浮動節點的漏電問題,降低漏電的功率消耗並使電路更加穩固。第二,我們提出非同步電路時脈改善技術,藉由同時將比較器輸出端電位的變化情況與電容陣列的上板電壓的穩定情形納入考量,依此來最小化數位電路的延遲時間,提升逐漸趨近式類比至數位轉換器的操作速度。第三,我們提出雜訊壓抑技術,在不消耗更多比較器功率的前提下,提升比較器的精確度。本設計使用台積電 90-nm UTM CMOS製程來實作晶片,其核心的電路面積為178.4 µm × 78.25 µm。從實際晶片量測結果顯示,此晶片在0.9伏特的電壓與每秒取樣一億二千萬次取樣的操作速度下,總消耗功率為0.81 mW,有效位元數為9.26 bits,每次資料轉換所消耗的能量為11 fJ,DNL與INL分別為+0.3/-0.69 LSB與+0.59/-0.55 LSB。

    This thesis proposes three circuit design techniques for successive-approximation (SAR) analog-to-digital converters (ADCs). A single-channel 10-bit 180-MS/s asynchronous SAR ADC in 90-nm CMOS process was realized based on the proposed techniques.
    First, the compact combinational timing control technique is proposed to simplify the digital control circuitry and to reduce the dynamic switching power consumption. The leakage problem from floating nodes is also removed to lower leakage power consumption and it makes the circuit more robust. Second, the enhanced asynchronous timing scheme is proposed to minimize the digital loop delay by taking both the output condition of the comparator and the DAC settling issue into consideration so that it can promote the operating speed of the SAR ADC. Third, the noise suppression technique is proposed to reduce the input-referred noise of the comparator without increasing the power consumption.
    The proof-of-concept prototype was fabricated in TSMC 90-nm CMOS process. The core area is 178.4 µm × 78.25 µm. From measurement results, at 0.9 V supply voltage and 120-MS/s sampling rate, the total power consumption is 0.81 mW, and ENOB is 9.26 bits. It achieves a FoM of 11 fJ/conversion-step. The measured DNL and INL are +0.3/-0.69 LSB and +0.59/-0.55 LSB, respectively.

    Table of Contents VII List of Figures IX List of Tables XIII Chapter 1 Introduction 1 1.1 MOTIVATION 1 1.2 ORGANIZATION 6 Chapter 2 Basics of Analog-to-Digital Converter 7 2.1 THE CONCEPT OF ADCS 7 2.2 QUANTIZATION ERROR 8 2.3 RESOLUTION AND ACCURACY 10 2.3.1 Resolution 10 2.3.2 Accuracy 11 2.4 STATIC SPECIFICATION 12 2.4.1 Offset 12 2.4.2 Gain Error 12 2.4.3 Nonlinearity 14 2.5 DYNAMIC SPECIFICATION 17 2.5.1 Signal-to-Noise Ratio (SNR) 18 2.5.2 Signal-to-Noise and Distortion Ratio (SNDR) 18 2.5.3 Effective Number of Bits (ENOB) 19 2.5.4 Spurious Free Dynamic Range (SFDR) 19 2.5.5 Total Harmonic Distortion (THD) 20 2.5.6 Effect Resolution Bandwidth (ERBW) 21 2.5.7 Figure of Merit (FoM) 21 2.6 NYQUIST RATE ADCS 21 2.6.1 Flash ADCs 23 2.6.2 Pipelined ADCs 24 2.6.3 Successive-approximation (SAR) ADCs 26 Chapter 3 Design Techniques of SAR ADCs 28 3.1 ASYNCHRONOUS PROCESSING [2] 29 3.2 CAPACITOR SWITCHING METHODS 31 3.2.1 Monotonic Switching Method [5] 32 3.2.2 Switchback Switching Method [6] 36 3.2.3 Merged Capacitor Switching Method [7][8] 38 3.2.4 Summary 41 3.3 ERROR TOLERANCE 43 3.3.1 Non-binary Approximation Algorithm [11] 44 3.3.2 Binary Error Compensation [12] 47 3.4 NOISE AND POWER OF THE COMPARATOR 49 Chapter 4 A 10-bit 180-MS/s SAR ADC 51 4.1 ABSTRACT 51 4.2 THE PROPOSED TECHNIQUES 53 4.2.1 Compact Combinational Timing Control 53 4.2.2 Enhanced Asynchronous Timing Scheme 55 4.2.3 Noise Suppression 59 4.3 ARCHITECTURE OF THE PROPOSED SAR ADC 65 4.4 CIRCUIT IMPLEMENTATION 66 4.4.1 S/H Circuit 66 4.4.2 Dynamic Two-stage Comparator 68 4.4.3 Digital Logic Control 70 4.4.4 Capacitive Array 74 4.5 NOISE ESTIMATION 76 Chapter 5 Simulation and Measurement Results 79 5.1 SIMULATION RESULTS 79 5.2 LAYOUT AND FLOOR PLAN 86 5.3 MICROGRAPH AND MEASUREMENT SETUP 89 5.4 MEASUREMENT RESULTS 91 Chapter 6 Conclusions and Future Work 104 Bibliography 106

    [1] Boris Murmann, “ADC Performance Survey 1997-2014,” [Online]. Available: http://www.stanford.edu/~murmann/adcsurvey.html.
    [2] Shuo-Wei Michael Chen, and Robert W. Brodersen, “A 6-bit 600-MS/s 5.3-mW Asynchronous ADC in 0.13-μm CMOS,” IEEE J. Solid-State Circuits, vol. 41, no. 12, pp. 2669–2680, Dec. 2006.
    [3] Brian P. Ginsburg, and Anantha P. Chandrakasan, “An energy-efficient charge recycling approach for a SAR converter with capacitive DAC,” in Proc.IEEE ISCAS, May 2005, pp. 184–187.
    [4] Michiel van Elzakker, Ed van Tuijl, Paul Geraedts, Daniël Schinkel, Eric Klumperink, and Bram Nauta, “A 1.9 μW 4.4 fJ/conversion-step 10 b 1 MS/s charge-redistribution ADC,” in IEEE ISSCC Dig. Tech. Papers, pp. 244–246, Feb. 2010.
    [5] Chun-Cheng Liu, Soon-Jyh Chang, Guan-Ying Huang, and Ying-Zu Lin, “A 10-bit 50-MS/s SAR ADC with a monotonic capacitor switching procedure,” IEEE J. Solid-State Circuits, vol. 45, no. 4, pp. 731–740, Apr. 2010.
    [6] Guan-Ying Huang, Soon-Jyh Chang, Chun-Cheng Liu, and Ying-Zu Lin, “10-bit 30-MS/s SAR ADC using a switchback switching method,” IEEE Trans. on VLSI Systems, vol. 21, no. 3, pp. 584–588, Mar. 2013.
    [7] Yan Zhu, Chi-Hang Chan, U-Fat Chio, Sai-Weng Sin, Seng-Pan U, Rui Paulo Martins, and Franco Maloberti, “A 10-bit 100-MS/s reference-free SAR ADC in 90nm CMOS,” IEEE J. Solid-State Circuits, vol.45, no.6, pp.1111–1121, Jun. 2010.
    [8] V. Hariprasath, J. Guerber, S.-H. Lee, U. Moon, “Merged capacitor switching based SAR ADC with highest switching energy-efficiency,” Electron. Lett., vol. 46, pp. 620–621, Apr. 2010.
    [9] J. Guerber, H. Venkatram, T. Oh, and U. Moon, “Enhanced SAR ADC energy efficiency from the early rest merged capacitor switching algorithm,” Proc. of IEEE Int. Sym. On Circuits and Systems, ISCAS, pp. 2361–2364, May 2012.
    [10] Chang-Yuan Liou, and Chih-Cheng Hsieh, “A 2.4-to-5.2fJ/conversion-step 10b 0.5-to-4MS/s SAR ADC with charge-average switching DAC in 90nm CMOS,” in IEEE ISSCC Dig. Tech. Papers, pp. 280–281, Feb. 2010.
    [11] Franz Kuttner, “A 1.2 V 10b 20 MSample/s non-binary successive approximation ADC in 0.13 μm CMOS,”in IEEE ISSCC Dig. Tech. Papers, pp. 176–177, Feb. 2010.
    [12] Chun-Cheng Liu, Soon-Jyh Chang, Guan-Ying Huang, Ying-Zu Lin, Chung-Ming Huang, and Chih-Hao Huang, “A 10b 100 MS/s 1.13 mW SAR ADC with binary-scaled error compensation,” in IEEE ISSCC Dig. Tech. Papers, pp. 386–387, Feb. 2010.
    [13] Sang-Hyun Cho, Chang-Kyo Lee, Jong-Kee Kwon,and Seung-Tak Ryu, “A 550-μW 10-b 40-MS/s SAR ADC With Multistep Addition-Only Digital Error Correction,” IEEE J. Solid-State Circuits, vol.46, no.8, pp.1811–1892, Aug. 2011.
    [14] Pierluigi Nuzzo, Fernando De Bernardinis, Pierangelo Terreni, and Geert Van der Plas, “Noise Analysis of Regenerative Comparators for Reconfigurable ADC Architectures,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 55, no. 6, pp. 1441–1454, July 2008.
    [15] Todd Sepke, Member, Peter Holloway, Charles G. Sodini, and Hae-Seung Lee, “Noise Analysis for Comparator-Based Circuits,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 56, no. 3, pp. 541–553, March 2009.
    [16] Pieter Harpe1, Yan Zhang, Guido Dolmans, Kathleen Philips, and Harmke De Groot, “A 7-to-10b 0-to-4MS/s Flexible SAR ADC with 6.5-to-16 fJ/conversion-step,” in IEEE ISSCC Dig. Tech. Papers, pp. 472–474, Feb. 2012.
    [17] Pieter Harpe, Eugenio Cantatore, and Arthur van Roermund, “A 2.2/2.7fJ/conversion-step 10/12b 40kS/s SAR ADC with Data-Driven Noise Reduction,” in IEEE ISSCC Dig. Tech. Papers, pp. 270–271, Feb. 2012.
    [18] Erwin Janssen, Kostas Doris, Athon Zanikopoulos, Alessandro Murroni, Gerard van der Weide, Yu Lin, Ludo Alvado, Frederic Darthenay, and Yannick Fregeais, “An 11b 3.6GS/s Time-Interleaved SAR ADC in 65nm CMOS,” in ISSCC Dig. Tech. Papers, pp. 464–465, Feb. 2013.
    [19] Dušan Stepanović, and Borivoje Nikolić, “A 2.8 GS/s 44.6 mW Time-Interleaved ADC Achieving 50.9 dB SNDR and 3 dB Effective Resolution Bandwidth of 1.5 GHz in 65 nm CMOS,” IEEE J. Solid-State Circuits, vol. 48, no. 4, pp. 971–982, April 2013.
    [20] Ying-Zu Lin, Chun-Cheng Liu, Guan-Ying Huang, Ya-Ting Shyu, Yen-Ting Liu, and Soon-Jyh Chang, "A 9-bit 150-MS/s Subrange ADC Based on SAR Architecture in 90-nm CMOS," IEEE Transactions on Circuits and Systems - I, vol. 60, no. 3, pp.570–581, Mar. 2013.
    [21] Bob Verbruggen, Masao Iriguchi, Jan Craninckx, “A 1.7mW 11b 250MS/s 2x Interleaved Fully Dynamic Pipelined SAR ADC in 40nm Digital CMOS,” in IEEE ISSCC Dig. Tech. Papers, pp. 466–467, Feb. 2012.
    [22] Behzad Razavi, Design of Analog Integrated Circuits, McGraw-Hill Companies, 2001.
    [23] Thomas Byunghak Cho, and Paul R. Gray, “A 10 b, 20 MsampWs, 35 mW pipeline AD converter,” IEEE J. Solid-state Circuits, vol. 30, no. 3, pp: 166–172, Mar. 1995.
    [24] Stephen H. Lewis, “Optimizing the stage resolution in pipelined, multistage, analog-to-digital converters for video rate applications,” IEEE Trans. Circuits Syst. II, vol. 39, no. 8, pp. 516–523, Aug. 1992.
    [25] Chun-Cheng Liu, Soon-Jyh Chang, Guan-Ying Huang, Ying-Zu Lin, and Chung-Ming Huang, “A 1 V 11 fJ/conversion-step 10 b 10 MS/s asynchronous SAR ADC in 0.18 μm CMOS,” in Proc. IEEE Symp. VLSI Circuits, Jun. 2010, pp. 241–242.
    [26] Guan-Ying Huang, Soon-Jyh Chang, Ying-Zu Lin, Chun-Cheng Liu and Chun-Po Huang, “A 10 b 200 MS/s 0.82 mW SAR ADC in 40 nm CMOS,” in IEEE ASSCC Dig. Tech. Papers, Nov. 2013, pp. 289–292.
    [27] R. Vitek, E. Gordon, S. Maerkovich, and A. Beidas, “A 0.015mm2 63fJ/conversion-step 10-Bit 220MS/s SAR ADC With 1.5b/step Redundancy and Digita Metastability Correction,” in IEEE Custom Integrated Circuits Conf., Sept. 2012, pp. 1–4.
    [28] Yun Chai, and Jieh-Tsorng Wu, “A 5.37mW 10b 200MS/s Dual-Path Pipelined ADC,” in IEEE ISSCC Dig. Tech. Papers, pp. 462–464, Feb. 2012.
    [29] Yong Lim, and Michael P. Flynn “A 100MS/s, 10.5-Bit, 2.46mW Comparator-less Pipeline ADC using Self-biased Ring Amplifiers,” in IEEE ISSCC Dig. Tech. Papers, pp. 202–203, Feb. 2014.

    下載圖示 校內:2019-08-25公開
    校外:2019-08-25公開
    QR CODE