簡易檢索 / 詳目顯示

研究生: 黃鵬彰
Huang, Peng-Chang
論文名稱: 用於光獵能之可重組功率轉換器積體電路與自供電光感測系統
A Reconfigurable Power Converter IC for Light Energy Harvesting and a Self-Powered Light-Sensing System
指導教授: 郭泰豪
Kuo, Tai-Haur
學位類別: 博士
Doctor
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2019
畢業學年度: 108
語文別: 英文
論文頁數: 84
中文關鍵詞: 單路徑三開關適性調整的部分開路電壓能量效率最大功率追蹤光伏能獵能可重組控制器
外文關鍵詞: 1P3S, single-path 3-switch, adaptive-fractional-open-circuit-voltage, energy efficiency, maximum power point tracking, photovoltaic energy harvesting, reconfigurable controller
相關次數: 點閱:89下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文提出可重組之光獵能積體電路及具光獵能之光感測系統之設計技術。
    本論文提出了一個應用於室內光伏獵能之單路徑三開關單電感雙輸入雙輸出轉換器管理光伏能模組、電池以及負載間的能量轉換,此轉換器透過減少共用電感開關以提升從光伏模組-電池-負載路徑的電能轉換效率,並且可重組成雙路徑三開關或組合成雙路徑六開關之單電感雙輸入雙輸出轉換器以提升不同應用下不同光能及負載能量變化下之效率,此轉換器更可進一步的擴充為並聯單路徑三開關單電感轉換器,以便應用於多光伏模組或負載之應用,其重組其擴充能力可透過設計單一晶片完成並提升應用彈性。此晶片以0.5-μm CMOS 製程實現,其尺寸為1.24 mm2,在單路徑三開關、雙路徑三開關及雙路徑六開關之架構下分別可達到95%、95%及89%之效率,並且僅消耗130 nA、130 nA及140 nA靜態電流。此論文亦提出了一個適性調整的部分開路電壓之最大功率追蹤電路,以達到在不同光照條件下自動調整最大功率電壓相對於開路電壓之比例的能力,此晶片以0.5-μm CMOS 製程實現,適性調整的部分開路電壓之電路僅消耗極低的100 pA之電流,量測結果顯示此電路在100–1000 lux照度下達到大於>99.6%之追蹤效率,勝過現有使用傳統適性調整的部分開路電壓最大追蹤方法之文獻。
    最後,本論文為了達到共用光伏二極體同時偵測光的方向、強度並獵取光能,提出了一個自供電單電感16輸入光處理系統。此論文提出之光處理系統結合了低成本、輕量且薄型的Fresnel鏡片及光伏模組以達到二維的光方向偵測能力。Fresnel鏡片將光線聚集在光伏模組上可提升光方向偵測的靈敏度以及獵取的能量,因此提升可量測的照度範圍。透過Fresnel鏡片的使用,所提出的光偵測系統可應用於室內或遠距離低光照的環境下,並且不需使用大面積的光伏模組。此系統可量測之入射光角度範圍為±65°為所有文獻最大。

    This dissertation proposed design techniques for reconfigurable light-energy harvesting IC and light-processing system with simultaneous energy harvesting and light sensing.
    This dissertation proposes a single-path three-switch (1P3S) single-inductor dual-input dual-output (SIDIDO) converter to manage power among a photovoltaic (PV) module, battery, and load for indoor PV energy harvesting. The 1P3S converter increases efficiency in the PV-to-battery-to-load path by eliminating inductor-sharing power switches, and can be reconfigured to a dual-path three-switch (2P3S) or combined into a dual-path six-switch (2P6S) SIDIDO converter for high energy efficiency in various applications with different PV and load power profiles. It can be further extended to a paralleled-1P3S converter for multiple PV modules and loads with a single shared inductor. The capability to be reconfigured and extended is achieved in a single-chip design with a proposed controller, thereby increasing application flexibility. The chip, including the three power switches and controller, is fabricated in 0.5-μm CMOS process with a 1.24 mm2 chip area. In the 1P3S, 2P3S, and 2P6S configurations, the measured peak efficiencies are 95%, 95%, and 89%, while the measured quiescent currents are 130 nA, 130 nA, and 140 nA, respectively. To harvest indoor light energy via PVs, this dissertation proposes an adaptive-fractional-open-circuit-voltage (AFOCV) maximum power point tracking (MPPT) circuit to automatically adjust the FOCV fraction under different illuminances for amorphous PV modules. Designed in 0.5-μm CMOS process, the AFOCV circuit consumes an ultra-low average current of 100 pA. Over 100–1000 lux illuminance, the measured MPPT efficiency with AFOCV is >99.6%, which outperforms that of other state-of-the-art EH ICs with conventional FOCV methods.
    To simultaneously sense light direction/intensity and harvest energy with shared photodiodes, a self-powered light-processing system is proposed. For advanced applications, this dissertation proposes a light-sensing system comprising a low-cost, lightweight, thin plastic Fresnel lens (F-lens) and PD modules to achieve 2D light direction sensing. The F-lens concentrates incident light on the PD modules to increase sensitivity to the light angle and harvested energy, thereby increasing the measurable ranges of illuminance. The enhancement to harvesting energy through the F-lens allows the proposed light-sensing system to be applied to indoor or long-distance dim-light sensing applications without large-area PD modules. Compared with prior arts, this work has the highest measurable incidence angle range of ±65°.

    Abstract (Chinese) I Abstract (English) III Acknowledgement V Contents VI List of Tables X List of Figures XI Chapter 1 Introduction 1 1.1 Motivation 1 1.2 Organization 6 Chapter 2 A Reconfigurable and Extendable Single-Inductor Single-Path Three-Switch Converter for Indoor Photovoltaic Energy Harvesting 7 2.1 Introduction 7 2.2 Operating Principle and Design for 1P3S Converters 13 2.2.1 Operating Principle of The 1P3S Converter 15 2.2.2 Efficiency Optimization 15 2.3 Reconfiguration and Extension Capabilities 17 2.3.1 Operations for 2P3S and 2P6S and paralleled 1P3S converters 19 2.3.2 Performance Comparison 22 2.4 Proposed Adaptive Fractional-Open-Circuit-Voltage (AFOCV) MPPT Method 29 2.5 Circuit Implementations 30 2.5.1 Power Monitor 30 2.5.2 Reconfigurable Controller 31 2.5.3 Pulse Generator 33 2.5.4 Adaptive-Fractional-Open-Circuit-Voltage Circuit 34 2.5.5 Start-Up Circuit and Oscillator with Frequency Modulation 36 2.5.6 VDD Generator 38 2.6 Measurement Results & Comparison 39 2.7 Summary 45 Chapter 3 Self-Powered 16-Input Light-Processing System for Simultaneous Energy Harvesting and Light Direction-and-Intensity Sensing with Shared Photodiodes 47 3.1 Introduction 47 3.2 Proposed Light Energy Harvest and Light Direction-and-Intensity Sensing System 50 3.2.1 Block Diagram of Proposed Light-Sensing System 51 3.2.2 Operating Principle and Light Intensity Sensing of Proposed Light-Processing System 53 3.2.3 Photodiode Implementation in Standard CMOS Process 55 3.3 Concept of Light Direction and Intensity Sensing 57 3.3.1 Photodiodes Directly Irradiated by A Single Light Source 58 3.3.2 Photodiodes Combined with a Fresnel Lens 60 3.4 Measurement Results & Comparison 62 3.4.1 Measurement Results 62 3.4.2 Comparison 65 3.5 Summary 65 Chapter 4 Conclusions 68 References 70 Appendix: An Analog Optimum Torque Control System with Background Calibration for a 200W Wind Energy Harvesting System 73 A.1. Introduction 73 A.2. Proposed Energy Harvesting System 74 A.3. Measurement Results & Comparison 77 A.4. Summary 80

    [1] R. J. M. Vullers, R. V. Schaijk, H. J. Visser, J. Penders, and C. V. Hoof, “Energy harvesting for autonomous wireless sensor networks,” IEEE Solid-State Circuits Mag., vol. 2, no. 2, pp. 29-38, Spring 2010.
    [2] Y. Shi, X. Chen, H.-S. Kim, D. Blaauw, and D. Wentzloff, “A 606μW mm-scale bluetooth low-energy transmitter using co-designed 3.5×3.5mm2 loop antenna and transformer-boost power oscillator,” IEEE ISSCC Dig. Tech. Papers, Feb. 2019, pp. 442–443.
    [3] W.-C. Liu, Y.-H. Wang, and T.-H. Kuo, “An adaptive load-line tuning IC for photovoltaic module integrated mobile device with 470 μs transient time, over 99% steady-state accuracy and 94% power conversion efficiency,” in IEEE ISSCC Dig. Tech. Papers, Feb. 2013, pp. 70–71.
    [4] S. Uprety and H. Lee, “A 93%-power-efficiency photovoltaic energy harvester with irradiance-aware auto-reconfigurable MPPT scheme achieving >95% MPPT efficiency across 650μW to 1W and 2.9ms FOCV MPPT transient time,” in IEEE ISSCC Dig. Tech. Papers, Feb. 2017, pp. 378–379.
    [5] S. Bandyopadhyay and A. P. Chandrakasan, “Platform architecture for solar, thermal, and vibration energy combining with MPPT and single inductor,” IEEE J. Solid-State Circuits, vol. 47, no. 9, pp. 2199-2215, Sept. 2012.
    [6] G. Yu, K. W. R. Chew, Z. C. Sun, H. Tang, and L. Siek, “A 400 nW single-inductor dual-input–tri-output DC–DC buck–boost converter with maximum power point tracking for indoor photovoltaic energy harvesting,” IEEE J. Solid-State Circuits, vol. 50, no. 11, pp. 2758-2772, Nov. 2015.
    [7] S. S. Amin and P. P. Mercier, “MISIMO: a multi-input single-inductor multi-output energy harvester employing event-driven MPPT control to achieve 89% peak efficiency and a 60,000× dynamic range in 28nm FDSOI,” in IEEE ISSCC Dig. Tech. Papers, Feb. 2018, pp. 144-145.
    [8] C.-W. Liu, H.-H. Lee, P.-C. Liao, Y.-L. Chen, M.-J. Chung, and P.-H. Chen, “Dual-source energy-harvesting interface with cycle-by-cycle source tracking and adaptive peak-inductor-current control,” IEEE J. Solid-State Circuits, vol. 53, no. 10, pp. 2741-2750, Oct. 2018.
    [9] A. Shrivastava, Y. K. Ramadass, S. Khanna, S. Bartling, and B. H. Calhoun, “A 1.2μW SIMO energy harvesting and power management unit with constant peak inductor current control achieving 83-92% efficiency across wide input and output voltages,” in IEEE Symp. VLSI Circuits Dig. Tech. Papers, Jun. 2014, pp. 1-2.
    [10] Y.-H. Wang, Y.-W. Huang, P.-C. Huang, H.-J. Chen, and T.-H. Kuo, “A single-inductor dual-path three-switch converter with energy-recycling technique for light energy harvesting,” IEEE J. Solid-State Circuits, vol. 51, no. 11, pp. 2716-2728, Nov. 2016.
    [11] M. Alioto, E. Consoli, and J. M. Rabaey, “EChO reconfigurable power management unit for energy reduction in sleep-active transitions,” IEEE J. Solid-State Circuits, vol. 48, no. 8, pp. 1921–1932, Aug. 2013.
    [12] A. Paidimarri, N. Ickes, and A. P. Chandrakasan, “A +10 dBm BLE transmitter with sub-400 pW leakage for ultra-low duty cycles,” IEEE J. Solid-State Circuits, vol. 51, no. 6, pp. 1331–1346, Jun. 2016.
    [13] S. Carreon-Bautista, L. Huang, and E. Sánchez-Sinencio, “An autonomous energy harvesting power management unit with digital regulation IoT applications,” IEEE J. Solid-State Circuits, vol. 51, no. 6, pp. 1457–1474, Jun. 2016.
    [14] S. Kim, V. Vaidya, C. Schaef, A. Lines, H. Krishnamurthy, S. Weng, X. Liu, D. Kurian, T. Karnik, K. Ravichandran, and J. Tschanz, V. De, “A single-stage, single-inductor, 6-input 9-output multi-modal energy harvesting power management IC for 100μW-120mW battery-powered IoT edge nodes,” in IEEE Symp. VLSI Circuits Dig. Tech. Papers, Jun. 2018, pp. 195–196.
    [15] W.-C. Liu, Y.-H. Wang, and T.-H. Kuo, “An adaptive load-line tuning IC for photovoltaic module integrated mobile device with 470 μs transient time, over 99% steady-state accuracy and 94% power conversion efficiency,” in IEEE ISSCC Dig. Tech. Papers, Feb. 2013, pp. 70–71.
    [16] Panasonic Eco Solution Amorton, Japan,“Amorphous silicon solar-cells,” Jan. 2016.
    [17] EnOcean, Germany, “Solar cells ECS 300 and ECS 310”, Oct. 2013.
    [18] J.-M. Liu, P.-Y. Wang, and T.-H. Kuo, “A current-mode DC–DC buck converter with efficiency-optimized frequency control and reconfigurable compensation,” IEEE Trans. Power Electron., vol. 27, no. 2, pp. 869–880, Feb. 2012.
    [19] X. Zhou, T. G. Wang, and F. C. Lee, “Optimizing design for low voltage DC-DC converters,” in Proc. IEEE Appl. Power Electron. Conf. (APEC), Feb. 1997, pp. 612–616.
    [20] W. Fu, S. T. Tan, and A. Fayed, “Switching and conduction loss analysis of buck converters operating in DCM-only scenarios,” in Proc. IEEE Int. Symp. Circuits Syst. (ISCAS), May 2013, pp. 921–924.
    [21] S. Stanzione, C. van Liempd, R. van Schaijk, Y. Naito, F. Yazicioglu, and C. Van Hoof, “A high voltage self-biased integrated DC-DC buck converter with fully analog MPPT algorithm for electrostatic energy harvesters,” IEEE J. Solid-State Circuits, vol. 48, no. 12, pp. 3002–3010, Dec. 2013.
    [22] C. Koch, J. Oehm, J. Emde, and W. Budde, “Light source position measurement technique applicable in SOl technology,” IEEE J. Solid-State Circuits, vol. 43, no. 7, pp. 1588-1593, Jul. 2008.
    [23] H.-J. Chen, Y.-H. Wang, P.-C. Huang, and T.-H. Kuo, “An energy-recycling three-switch single-inductor dual-input buck/boost DC-DC converter with 93% peak conversion efficiency and 0.5mm2 active area for light energy harvesting,” in IEEE ISSCC Dig. Tech. Papers, Feb. 2015, pp. 374-375.
    [24] H. Song, Z. Lu, T. Luo, J. B. Christen, H. Wang, “A CMOS self-powered monolithic light detection sensor with SAR ADC,” in IEEE ISOCC, Nov. 2014, pp. 58-62.
    [25] S. U. Ay, “A 1.32pW/frame•pixel 1.2V CMOS energy-harvesting and imaging (EHI) APS imager,” in IEEE ISSCC Dig. Tech. Papers, Feb. 2011, pp. 116-118.
    [26] A. Y.-C. Chiou and C.-C. Hsieh, “A 137 dB dynamic range and 0.32 V self-powered CMOS imager with energy harvesting pixels,” IEEE Journal of Solid-State Circuits, vol. 51, no. 11, pp. 2769-2776, Nov. 2016.
    [27] K. Kadirvel and J. Carpenter, “Self-powered, ambient light sensor using bq25504,” Sep. 2013. [Online]. Available: http://www.ti.com/lit/an/slua629a/slua629a.pdf
    [28] K. L. Chopra, P. D. Paulson, V. Dutta, "Thin-film solar cells: An overview", Progress Photovoltaics Res. Appl., vol. 12, no. 2-3, pp. 69-92, Mar. 2004.
    [29] V. V. R. Scarpa, S. Buso, and G. Spiazzi, “Low-complexity MPPT technique exploiting the PV module MPP locus characterization,” IEEE Trans. Ind. Electron., vol. 56, no. 5, pp. 1531–1538, May 2009.

    下載圖示 校內:2024-12-25公開
    校外:2024-12-25公開
    QR CODE