簡易檢索 / 詳目顯示

研究生: 魏永強
Wei, Yung-Chiang
論文名稱: 先進視訊編碼中內部預測的效能提升
Performance Improvements for Intra-Prediction in Advanced Video Coding
指導教授: 楊家輝
Yang, Jar-Ferr
學位類別: 博士
Doctor
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2008
畢業學年度: 96
語文別: 英文
論文頁數: 137
中文關鍵詞: 視訊編碼內部預測形狀編碼
外文關鍵詞: video coding, intra-prediction, shape coding
相關次數: 點閱:57下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文針對H.264/AVC的內部預測編碼方式,提出數個演算法來改善其效能。首先提出一個快速決定編碼模式的機制來減少運算的複雜度。藉由圖像的邊界資訊,就可以達到這個目的。而這些邊界資訊,只須經由部份的轉換係數即可求得,藉此來減少編碼器的計算量。實驗證明我們所提出的演算法,只要損失少許PSNR的品質,可以縮短許多編碼時間。
    其次,當H.264在執行CAVLC時,必須先將二維的係數掃描成一維。我們提出一種適應性的掃描方式來改變傳統的zig-zag掃描。這種方式是根據不同的內部預測模式來採用不同的掃描次序。藉由分析預測編碼後的殘值,我們發覺不同內部預測模式會造成殘值有不同的統計特性。所以,透過馬可夫模型的應用,可以推導出適當的掃描次序。實驗證明,我們所提出的方法,確實可以提高編碼效能。
    第三,針對無失真編碼,我們也提出取代zig-zag掃描的方法。H.264/AVC無失真編碼可以利用DPCM的方式來完成。針對DPCM的編碼方式,採用統計每一個係數的平均能量。藉由能量的排序,來決定不同內部預測模式的掃描次序。
    最後,我們提出一個稱之為以條件區塊及內文為基礎的算術編碼(BCAE)方式,來提升形狀編碼(Shape Coding)的效能。藉由條件機率模型的建立,形狀編碼採用CAE方法的壓縮效果可以有效的提升。我們可以將BCAE用在H.264/AVC的視訊物件編碼應用上。實驗證明,我們所提出的BCAE比MPEG-4標準的CAE還要更好。

    In this dissertation, we propose several coding algorithms to improve the coding efficiency for intra-prediction coding scheme defined in H.264/AVC. First, a fast mode decision method for intra-prediction is proposed to reduce the computational complexity of H.264/AVC encoders. With edge information, we propose a novel fast estimation algorithm for mode selection, where the edge direction of each coding block is detected from only part of the transformed coefficients. Hence, the computation complexity is greatly reduced. Experimental results show that the proposed fast mode decision method can efficiently reduce the encoding time for all test sequences with acceptable degradation of PSNR and bitrates.
    Secondly, instead of traditional zig-zag scan when performing CAVLC in H.264, an adaptive scan method is proposed, which uses the best fitted scan order for each intra-prediction mode. In H.264/AVC, the residuals after various intra-prediction modes have different statistical characteristics. After analyses of the transformed residuals, we derive an adaptive scan order scheme based on Markov model, which could match up with the intra-prediction mode, to further improve the efficiency of intra coding. Simulation results show that the proposed adaptive scan scheme can aid the context-adaptive variable length coding (CAVLC) to achieve better rate-distortion performances in H.264/AVC video coders. When the zig-zag scan order is replaced with the derived adaptive scan order, the coding performance can be improved with PSNR increased and no extra bits required.
    Thirdly, for lossless intra coding included in H.264/AVC FRExt, the so-called fidelity range extension, we propose an adaptive scan order method to improve the coding efficiency. In image/video coding standards, the zig-zag scan, which transfers the coefficients of a two-dimensional transformed matrix from low-frequency to high-frequency components, successfully help to achieve an effective entropy encoder. Generally, the optimal scan of two-dimensional residual samples should be scanned in the descending order of their statistically-averaged power levels such that we can achieve more efficient variable length coding. For H.264/AVC with sample-wise DPCM lossless intra coding, which is included in the FRExt, the so-called fidelity range extension, the residuals after different directional prediction modes should have different statistical characteristics. After analyzing the power of the residuals, an adaptive scan order method to optimally match up with each intra-prediction mode for improving coding efficiency is proposed.
    Finally, an efficient shape coding scheme, called block-conditioned context-based arithmetic-encoding (BCAE) is proposed to improve the coding efficiency of video object shape coding. By performing simple block detection, we first setup an efficient conditional source model in a block-by-block fashion and then derive the probability modes based on context-based arithmetic-encoding (CAE), by training various test video sequences. CAE is an efficiency coding scheme defined in MPEG-4 shape coding, and could be exploited by H.264/AVC for the applications of video object coding. With re-trained probability tables derived by our proposal, the coding efficiency of the proposed BCAE algorithm is better than that of the standardized CAE.

    Abstract iii Table of Contents ix Table Captions xi Figure Captions xiii 1. Introduction 1 1.1. Fast Intra-Mode Decision in Transform-Domain 2 1.2. Adaptive Scan Order for Intra-Mode Video Coding 4 1.3. Adaptive Scan Order for Lossless Video Coding 6 1.4. Block-Conditioned Binary Shape Coding 7 1.5. Organization of Dissertation 9 2. Fast Intra-Mode Decision in Transform-Domain 11 2.1. Intra-Prediction for H.264/AVC 11 2.2. A famous Fast Mode Decision Algorithm for Intra-Prediction 15 2.3. Fast Block Edge Detection 17 2.4. The Proposed Fast Intra-Mode Decision Algorithm 24 2.4.1. Fast Mode Decision Algorithm 24 2.4.2. Complexity Analyses 26 2.5. Experimental Results 28 2.5.1. Experiments on All Intra-Frames Sequences 29 2.5.2. Experiments on IPPP Sequences 36 2.6. Summary 43 3. Adaptive Scan Order for Intra-Mode Video Coding 45 3.1. Entropy Coding in H.264/AVC 45 3.2. Statistically Optimal Scan of Transformed Coefficients 48 3.3. Spatial Data and Predictive Data Modeling 51 3.3.1. Spatial Data Modeling 53 3.3.2. Predictive Data Modeling 55 3.3.3. Predictive and Spatial Data Analyses 59 3.3.4. An example to derive the scan order for Mode 0 63 3.4 Experimental Results 65 3.4.1. Experiments for All Intra Frames Sequences 66 3.4.2. Experiments on IPPP Sequences 67 3.5. Summary 74 4. Adaptive Scan Order for Lossless Video Coding 77 4.1. H.264 Lossless Intra Coding 77 4.2. Statistically Optimal Scan of Residual Values 82 4.3. Experimental Results 86 4.4. Summary 88 5. Block-Conditioned Binary Shape Coding 91 5.1. Block-Based Intra CAE 91 5.2. Block-Conditioned CAE Method 97 5.2.1. BAB Modes and Mode Determination 98 5.2.2. BAB Mode Compression 100 5.3. Experimental Results 105 5.4. Conclusions 110 6. Conclusions and Future Works 113 6.1. Conclusions of the Researches 113 6.2. Future Works 115 Bibliography 117

    [1] Joint Video Team, “Draft ITU-T Recommendation and Final Draft International Standard of Joint Video Specification (ITU-T Rec.H.264 | ISO/IEC 14496-10 AVC),” Joint Video Team (JVT) of ISO/IEC MPEG and ITU-T VCEG, JVT-G050, Mar. 2003.
    [2] ITU Telecom. Standardization Sector of ITU, “Video codecs for audiovisual services at p × 64kb/s”, ITU-T Recommendation H.261, Mar. 1993.
    [3] ISO/IEC, Information Technology-Coding of Moving Pictures and Associated Audio for Digital Storage Media at up to About 1.5 Mbit/s: Video, ISO/IEC 11172-2 (MPEG-1 Video), 1993.
    [4] ISO/IEC, Information Technology-Generic Coding of Moving Pictures and Associated Audio Information: Video, 13818-2-ITU-T Rec. H.262 (MPEG-2 Video), 1995.
    [5] ITU Telecom. Standardization Sector of ITU, “Video coding for low bitrate communication,” ITU-T Recommendation H.263, Mar. 1996.
    [6] ISO/IEC, Information Technology-Generic Coding of Audio-Visual Objects Part 2: Visual, ISO/IEC 14496-2 (MPEG-4 Video), 1999.
    [7] S.-K. Kwon, A. Tamhankar, and K. R. Rao, “Overview of H.264/MPEG-4 part 10,” Journal of Visual Communication and Image Representation, vol. 17, pp. 186-216, 2006.
    [8] Society of Motion Picture and Television Engineers (SMPTE), “Proposed SMPTE standard for television: VC-1 compressed video bitstream format and decoding process,” 2005.
    [9] G. J. Sullivan, T. McMahon, T. Wiegand, and A. Luthra, Eds., “Draft text of H.264/AVC fidelity range extensions,” in Joint Video Team (JVT) Doc. JVT-L047, Jul. 2004.
    [10] D. Marpe, T. Wiegand, and S. Gordon, “H.264/MPEG-4–AVC fidelity range extensions: tools profiles, performance, and application areas,” International Conference on Image Processing, Sep. 2005.
    [11] Y.-L. Lee, K.-H. Han, and G. J. Sullivan, “Improved lossless intra coding for H.264/MPEG-4 AVC,” IEEE Trans. on Image Processing, vol. 15, no. 9, pp. 2610 –2615, Sep. 2006.
    [12] Y.-L. Lee, K.-H. Han, and S.-C. Lim, “Lossless intra coding for improved 4:4:4 coding in H.264/MPEG-4 AVC,” in Joint Video Team (JVT) Doc. JVT-P016, Jul. 2005.
    [13] N. Brady and F. Bossen, “Shape compression of moving objects using context-based arithmetic encoding,” Signal Processing: Image Communication, vol. 15, pp. 601–617, 2000.
    [14] Y.-C. Wei and J.-F. Yang, “An efficient context-based arithmetic coding for MPEG-4 video objects,” 2003 International Conference on Informatics, Cybernetics and Systems, pp. 1178–1182, Dec. 2003.
    [15] F. Pan., X. Lin, S. Rahardja, K. P. Lim, Z. G. Li, D. Wu, and S. Wu, “Fast mode decision algorithm for intra-prediction in H.264/AVC video coding,” IEEE Trans. on Circuits and Systems for Video Technology, vol. 15, no. 7, pp. 813–822, Jul. 2005.
    [16] Rui Su, Guizhong Liu and Tongyu Zhang, “Fast mode decision algorithm for intra prediction in H.264/AVC with integer transform and adaptive threshold,” Journal Signal, Image and Video Processing, Springer, vol.1, No. 1, pp. 11–27, Apr. 2007.
    [17] B. Meng and O. C. Au, “Fast intra-prediction mode selection for 4x4 blocks in H.264,” Proceedings of IEEE International Conference on Acoustics, Speech, and Signal, Apr. 2003.
    [18] B. Meng, O. C. Au, C.-W. Wong, and H.-K. Lam, “Efficient intra-prediction mode selection for 4x4 blocks in H.264,” Proceedings of IEEE International Conference on Multimedia and Expo, Jul. 2003.
    [19] C.-L. Yang, L.-M. Po, and W.-H. Lam, “A fast H.264 intra prediction algorithm using macroblock properties,” International Conference on Image Processing, vol.1, pp. 461–464, Oct. 2004.
    [20] C.-C. Cheng and T.-S. Chang, “Fast three step intra prediction algorithm for 4x4 blocks in H.264,” Proceedings of IEEE International Symposium on Circuits and Systems, May 2005.
    [21] H. S. Chang and K. Kang, “A compressed domain scheme for classifying block edge pattern,” IEEE Trans. on Image Processing, vol. 14, no. 2, pp. 145–151, Feb. 2005.
    [22] H. S. Malvar, A. Hallapuro, M. Karczewicz, and L. Kerofsky, “Low-complexity transform and quantization in H.264/AVC,” IEEE Trans. on Circuits and Systems for Video Technology, vol. 13, no. 7, pp. 598–603, Jul. 2003.
    [23] JVT H.264/AVC Reference Software. [Online]: http://iphome.hhi.de/suehring/tml.
    [24] G. Bjøntegaard, “Calculation of average PSNR differences between RD-curves,” presented at the 13th VCEG-M33 Meeting, Apr. 2001.
    [25] G. Bjøntegaard and K. Lillevold, “Context-adaptive VLC (CVLC) coding of coefficients,” in Joint Video Team (JVT) Doc. JVT-C028, May 2002.
    [26] Iain E. G. Richardson, H.264 and MPEG-4 Video Compression, John Willey & Sons, 2003.
    [27] A. K. Jain, Fundamentals of Digital Image Processing, Englewood Cliffs, Prentice-Hall, 1989.
    [28] A. Puri, X. Chen, and A. Luthra, “Video coding using the H.264/MPEG-4 AVC compression standard,” Signal Processing: Image Communication, vol. 19, pp. 793–849, 2004.
    [29] G. Sullivan, T. Wiegand, and K.-P. Lim, “Joint model reference encoding methods and decoding concealment methods,” in Joint Video Team (JVT) Doc. JVT-I049, Sep. 2003.
    [30] Edward R. Dougherty, Random Processes for image and signal Processing, SPIE Press, 1999.
    [31] Khalid Sayhood, Data Compression, Academic Press, 2000.
    [32] S. Sun, “Intra lossless coding and QP range selection,” in Joint Video Team (JVT) Doc. JVT-C023, May 2002.
    [33] R. E. Blahut, Principles and Practice of Information Theory, Addison-Wesley, 1991.
    [34] ISO/IEC 15444-1: JPEG 2000 image coding system, Mar. 2000.
    [35] G. Xiao, X. Shi, P. An, Z. Zhang, G. Gao, and G. Teng, “An optimized context-based adaptive binary arithmetic coding algorithm in progressive H.264 encoder,” Proceedings of SPIE, vol. 6242, 2006.
    [36] L. Li, Y. Song, T. Ikenaga, and S. Goto, “A CABAC encoding core with dynamic pipeline for H.264/AVC main profile,” IEEE Asia Pacific Conference, pp. 760–763, Dec. 2006.
    [37] T. Ebrahimi and C. Horne, “MPEG-4 natural video coding – an overview,” Signal Processing: Image Communication, vol. 15, pp. 365–385, 2000.
    [38] T. Wiegand, G. J. Sullivan, G. Bjøntegaard, and A. Luthra, “Overview of the H.264/AVC video coding standard,” IEEE Trans. on Circuits and Systems for Video Technology, vol. 13, no. 7, pp. 560–576, Jul. 2003.
    [39] G. J. Sullivan and T. Wiegand, “Video compression –from concepts to the H.264/AVC standard,” Proceedings of the IEEE, vol. 93, no. 1, pp. 18–31, Jan. 2005.
    [40] J. Ostermann, E. S. Jang, J. Shin, and T. Chen, “Coding of arbitrarily shaped video objects in MPEG-4,” Proceedings of IEEE International Conference on Image Processing — Special Session on Shape Coding, Santa Barbara, CA, pp. 496–499, Oct. 1997.
    [41] N. Brady, F. Bossen, and N. Murphy, “Context-based arithmetic encoding of 2D shape sequences,” Proceedings of IEEE International Conference on Image Processing, vol. 1, pp. 29–32, Oct. 1997.
    [42] G. Langdon and J. Rissanen, “Compression of black-white images with arithmetic coding,” IEEE Trans. on Communication, no. 6, pp. 858–867, Jun. 1981.
    [43] P. G. Howard and J. S. Vitter, “Arithmetic coding for data compression,” Proceedings of the IEEE, vol. 82, no. 6, pp. 857–865, Jun. 1994.

    下載圖示 校內:2009-06-26公開
    校外:2009-06-26公開
    QR CODE