簡易檢索 / 詳目顯示

研究生: 江前輝
Chiang, Chien-Huei
論文名稱: ANGINEX 結合磁性奈米粒子應用於口腔癌的標靶治療以及腫瘤顯影
ANGINEX conjugated magnetite nanoparticles for oral cancer targeting and imaging
指導教授: 陳玉玲
Chen, Yuh-Ling
學位類別: 碩士
Master
系所名稱: 醫學院 - 口腔醫學研究所
Institute of Oral Medicine
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 81
中文關鍵詞: 奈米腫瘤新穎顯影重組蛋白
外文關鍵詞: Anginex, nanoparticle, peptide conjugated, tumor
相關次數: 點閱:113下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 人工合成胜肽ANGINEX 是一段由33個胺基酸組成β-sheet 構型短片段胜肽,在細胞實驗中抑制血管內皮細胞(vascular endothelial cell)生長並且藉由辨識腫瘤周邊血管細胞上的galectin-1 達到腫瘤生長的抑制。Galectin-1 大量表現在口腔癌的侵犯前緣癌細胞,以及口腔癌周邊的血管內皮細胞。在本次實驗中,我們希望合成連結ANGINEX 的奈米粒子,目的標靶癌細胞同時具有腫瘤顯影以及癌症治療效果。首先建構ANGINEX DNA序列,送入pET28a 載體表達ANGIEX 重組蛋白。我們觀察到了ANGINEX 如同少數一些其他抗血管新生的蛋白,帶有著抗細菌生長的活性,使得即便可以觀察到ANGINEX 在菌液當中的存在,而其濃度卻無法支持接下來的實驗分析,因此我們進一步透過胜肽合成儀來取得ANGINEX。我們將合成的ANGINEX 上的六組胺酸(histidine)經由自組裝方式結合至奈米鐵上的Ni-NTA,以產生連結ANGINEX 的奈米粒子(ANG-Fe@),我們分析ANGINEX 和ANG-Fe@ 在血管內皮細胞生物活性上的影響,測定奈米氧化鐵吸收ANGINEX 的鍵結比例,同時將ANGINEX 接上奈米氧化鐵後,測試對於HUVEC 細胞在細胞實驗當中是否具有其標靶效果。
    另一方面,經由致癌藥物4-NQO餵食B6小鼠, 經由初代培養得到的鼠類舌癌細胞,命名為W1ms(Wild type 1 mouse squamous cell) ,使用皮下注射到背部以及舌內注射打入到SCID mice 跟B6 mice ,希望能得到小鼠口腔癌動物模式,同時測定了這株細胞的基因型態以及是否具有癌細胞的特質,像是具有侵襲能力以及快速的生長速度。雖然最後無法由這樣的動物模式產生腫瘤,我們改用了人類口腔癌細胞OC2產生的腫瘤,在小鼠上驗證ANG-Fe@ 在腫瘤的標靶顯影以及抑制生長的效果。
    小鼠的動物實驗發現,ANG-Fe@ 在帶有著OC2腫瘤的SCID 小鼠身上,在肝臟以及腎臟可以觀察到負顯影的產生,而在腫瘤的地方沒有能夠觀察到負顯影,可能是由於在肝臟以及腎臟的部分殘留了過多的ANG-Fe@ ,導致腫瘤部位的ANG-Fe@ 濃度降低,而ANGINEX 本身的標靶物為血管內皮細胞,在一些非腫瘤位置的血管內皮細胞表達Galectin-1 的同時,很可能也會帶著ANG-Fe@ 前往該位置而非腫瘤。如果能夠提升標靶蛋白對於腫瘤的辨識力,或是同時結合多種蛋白連結於奈米粒子上提高對於腫瘤細胞外圍帶有的受器的辨識能力,減低奈米粒子被代謝器官以及免疫系統吸收的比例。這樣一來奈米粒子結合標把蛋白對於腫瘤位置的顯影效果,未來可能成為一個高準確度的新穎顯影方式。

    ANGINEX is an artificial beta-sheet peptide composed of 33 amino acids. It inhibits vascular endothelial cell growth in vitro and tumor growth in vivo by targeting galectin-1 on the tumor associate vascular endothelial cells. Galectin-1 is overexpressed at the invasive front of oral carcinoma and oral cancer-associated vascular endothelial cells. In this study, we wanted to synthesize ANGINEX-conjugated nanoparticles to develop tumor-targeted nanoparticles for oral cancer imaging and therapy. First, we constructed ANGINEX DNA sequence into a pET-28a plasmid for recombinant ANGINEX protein production. We observed that like other anti-angiogenesis peptides, ANGINEX also carries the activity of bacteria proliferation inhibition. Even though we can see the ANGINEX appeared at the bacteria lysate, the ANGINEX concentration is not sufficient to support the following experiments. Therefore, we further used the synthetic ANGINEX for the following experiments. Next, ANGINEX-conjugated nanoparticles (ANG-Fe@) have been synthesized through self-assembly of hexahistidine tag on recombinant ANGINEX to nickel nitrilotriacetate (Ni-NTA) coated Fe3O4 nanoparticles. On the other hand, we have isolated a murine oral cancer cell line, named W1ms, from 4-NQO carcinogen feeding B6 mice. We have subcutaneously injected this cell line into the posterior flank and the tongue of SCID and B6 mice trying to induce experimental mice oral cancer models. After two months of implantation, we found W1ms cells failed to form tumor in both murine systems. Hence, we evaluated the tumor targeting and inhibiting abilities of ANG-Fe@ by using human oral cancer OC2 tumor mice model.
    On the tumor bearing SCID mice, the ANG-Fe@ could induce a strong negative signal on liver and kidney on the MRI scanning. We do not found a strong negative signal in the tumor position. It might be due to the over absorption from the liver and kidney, resulting a low concentration of ANG-Fe@ in the tumor site. ANGINEX targets the endothelial cell, some of the endothelial cell over expressing Galectin-1 might also being targeted by the ANG-Fe@ thus reduce the negative signal of the tumor. To increase the tumor targeting ability of the nano-particle conjugated protein or try conjugate multiple peptide to increase the combination of the tumor receptors through the different peptides, also keep lower the absorption of the liver, kidney and the immune system. The peptide conjugated nanoparticle in the MRI imaging developing system could be a high precision way in the future medical bio-imaging technique.

    中文摘要 I Abstract III 致謝 V 目錄 VI 緒論 1 血管新生與腫瘤增生(Angiogenesis and tumorigenesis) 1 血管新生抑制劑(Angiogenesis inhibitors) 3 Anginex 5 Galectin-1 and Anginex 7 奈米技術與奈米生物顯影材料(Nanotechnology and Nano-material in bio-imaging) 8 研究動機 11 材料與方法 12 一、 細胞培養 12 1-1 人類臍帶靜脈內皮細胞(HUVEC)之初代培養 12 1-2繼代培養 13 1-3冷凍細胞 13 1-4細胞解凍 14 1-5 細胞計數 14 二、 Anginex 蛋白質之產生與表現測定 15 2-1 Anginex DNA 序列建構 16 2-2 Anginex DNA接入質體 pET28a 17 2-3 pET28a-Anginex 送入JM109以及BL21/DE3 18 2-4 大量表達重組Anginex 蛋白質 18 2-5 親和性膠體純化重組蛋白Anginex (TALON Resin) 19 2-6 蛋白質電泳(Protein electrophoresis) 20 2-7 His-tag-Anginex 蛋白質西方墨點法偵測 22 三、 細胞內m-RNA 表現量分析 23 3-1 RNA 萃取 23 3-2 RNA 和 DNA 定量 24 3-3 反轉錄酶反應(reverse transcription) 24 3-4 聚合酶連鎖反應(Polymerase chain reaction, PCR) 25 3-5 洋菜膠電泳分析(Agarose gel electrophoresis) 26 四、 病毒感染技術 27 4-1 腺病毒載體感染技術(Lentivirus vector infection) 27 五、 癌細胞細胞特性分析 28 5-1 細胞移行分析 28 5-2 細胞增長速度分析 29 六、 奈米粒子連結anginex 蛋白 29 6-1 Anginex 鍵結奈米粒子吸收比率 30 6-2 奈米粒子連結Anginex 後對細胞IC50 測試 30 6-3 Anginex 經由EK peptidase 作用後的質譜儀分析 31 6-4 Fe3O4-Ni-NTA-Anginex吸附HUVEC 效率測定 31 七、 Anginex 對HUVEC 增生抑制性偵測 32 7-1 Anginex 對HUVEC 細胞的IC50 測試 32 7-2 Anginex 對HUVEC Tubeformation 的影響 33 八、 Fe3O4-Ni-NTA-Anginex在小鼠腫瘤MRI照影實驗 33 8-1 小鼠腫瘤產生 33 8-2 Fe3O4-Ni-NTA-Anginex在小鼠腫瘤MRI照影 34 實驗結果 35 1. Anginex 載體建構 35 2. Anginex 蛋白質表達與表達結果測定 35 3. N端帶有His-tag 以及 EK recognition site 的人工合成Anginex, 在HUVEC當中具有抑制細胞生長的性質 36 4. 經質譜儀確認合成出的Anginex 可被 Enterokinase 切下 38 5. Anginex可以降低HUVEC 形成管狀結構(Tube formation) 38 6. Galectin-1 可以促進HUVEC 細胞增生,再添加了相同濃度的Angienx 後可以抑制這樣的現象產生 39 7. 在Silencing Galectin-1 及代數後期的HUVEC 細胞當中,Anginex抑制細胞生長的能力較低 39 8. 奈米氧化鐵在鍵結上Ni-NTA 後,對Anginex 胜肽吸收的效果大約是 1分子的奈米氧化鐵接上約25分子的Anginex 蛋白質 40 9. 奈米氧化鐵粒子在和Anginex 鍵結後,可以增強奈米氧化鐵對於血管內皮細胞的結合能力 41 10. 將Anginex 鍵結在奈米氧化鐵粒子上後,會增加對血管內皮細胞增生的抑制效果 …………………………………………………………………………………………………………………..41 11. 小鼠舌癌細胞(W1ms)鼠類(Murine)基因型態確認,以及培養期間癌細胞的型態,並且確認其癌細胞特性,包括具有細胞侵襲(invasion)能力以及高生長速度(proliferation rate)…………………………………………………………………………………………………………..42 12. Fe3O4-Ni-NTA 在結合 Anginex 後由靜脈打入帶有腫瘤的小鼠得到MRI 顯影圖像 …………………………………………………………………………………………………………………..43 討論 45 結論 52 參考文獻 53 結果圖 59 圖一、pET28a vector 59 圖二、經由PCR 反應放大後,可以得到170b.p. 大小的Anginex DNA 產物,利用DNA 定序的結果比對Anginex 序列正確無誤後,送入pET28a 載體中 60 圖三、在引導Anginex 表達後會使得勝任細菌存活率降低,在Western blot 偵測中看到Anginex 的表現量再加入IPTG 後上升 61 圖四、帶有His-tag 及EK site 的Anginex 對HUVEC 細胞具有抑制增生的效果 62 圖五、經質譜儀確認合成出的Anginex 可被 Enterokinase 切下 63 圖六、在N 端帶有十一個額外胺基酸的ANGINEX 具有Tube formation 抑制能力 64 圖七、Galectin-1 對HUVEC 細胞產生的增生效果,可以被ANGINEX 所抑制 65 圖八、在Silencing Galectin-1 及代數後期的HUVEC 細胞當中,ANGINEX 所表現的抑制細胞增生能力較低 66 圖九、奈米氧化鐵在鍵結上Ni-NTA 後,對ANGINEX 胜肽吸收的效果大約是 1分子的奈米氧化鐵接上約25分子的Anginex 蛋白質 67 圖十、奈米氧化鐵粒子在和Anginex 鍵結後,可以增強奈米氧化鐵對血管內皮細胞細胞的吸附能力 68 圖十一、將Anginex 鍵結在奈米氧化鐵粒子上後,對血管內皮細胞外形影響觀測 69 圖十二、將Anginex 鍵結在奈米氧化鐵粒子上後,會增對血管內皮細胞增生的抑制效果,將Galectin-1 鍵結在HUCEC 上則不會增加抑制功效 70 圖十三、初代培養得到小鼠舌癌細胞(W1ms)鼠類(Murine)基因型態確認,以及培養期間癌細胞的型態 71 圖十四、W1ms細胞在TransWell 放置三十六小時候,觀測到具有穿透TransWell membrane 的能力 72 圖十五、W1ms 細胞相對於人類口腔癌細胞OC2 and OECM1,生長速度較快 73 圖十六、Fe3O4-Ni-NTA 及鍵結Anginex 之後在MRI 照射下,對小鼠肝臟以及眼窩注射的部位,產生了負顯影的效果 74 圖十七、Fe3O4-Ni-NTA 及鍵結Anginex 之後在MRI 照射下,對小鼠腎臟的位置,產生部分負顯影的效果 75 圖十八、Fe3O4-Ni-NTA 及鍵結Anginex 之後在MRI 照射下,對小鼠全身訊號定量,有打入奈米氧化鐵粒子的小鼠,產生的訊號相對較低 76 圖十九、Fe3O4-Ni-NTA 及鍵結Anginex 之後在MRI 照射下,對小鼠腫瘤的位置顯影圖 77 圖二十、利用Image J 定量腫瘤部位MRI訊號,Fe3O4-Ni-NTA 及鍵結Anginex 之後,在三種相位下觀測腫瘤的範圍定量的訊號 78 表一、Anginex DNA 利用四段Oligo nucleotide 組成意識圖 79 表二、Fe3O4-Ni-NTA 奈米氧化鐵接上帶有His-tag 之Anginex 流程 80 自述 81

    Akimoto, Y., Obinata, A., Hirabayashi, J., Sakakura, Y., Endo, H., Kasai, K., and Hirano, H. (1993). Secretion of endogenous 16-kDa beta-galactoside-binding lectin from vitamin A-pretreated chick embryonic cultured skin. Exp Cell Res 205, 251-260.

    Arroyo, M.M., and Mayo, K.H. (2007). NMR solution structure of the angiostatic peptide anginex. Biochim Biophys Acta 1774, 645-651.

    Bevan, B.H., Kilpatrick, D.C., Liston, W.A., Hirabayashi, J., and Kasai, K. (1994). Immunohistochemical localization of a beta-D-galactoside-binding lectin at the human maternofetal interface. Histochem J 26, 582-586.

    Birnbaum, D. (1995). VEGF-FLT1 receptor system: a new ligand-receptor system involved in normal and tumor angiogenesis. Jpn J Cancer Res 86, inside cover.

    Black, W.C., and Welch, H.G. (1993). Advances in diagnostic imaging and overestimations of disease prevalence and the benefits of therapy. N Engl J Med 328, 1237-1243.

    Brandwijk, R.J., Dings, R.P., van der Linden, E., Mayo, K.H., Thijssen, V.L., and Griffioen, A.W. (2006). Anti-angiogenesis and anti-tumor activity of recombinant anginex. Biochem Biophys Res Commun 349, 1073-1078.

    Brandwijk, R.J., Mulder, W.J., Nicolay, K., Mayo, K.H., Thijssen, V.L., and Griffioen, A.W. (2007). Anginex-conjugated liposomes for targeting of angiogenic endothelial cells. Bioconjug Chem 18, 785-790.

    Brouty-Boye, D., and Zetter, B.R. (1980). Inhibition of cell motility by interferon. Science 208, 516-518.

    Bullock, S.L., Johnson, T.M., Bao, Q., Hughes, R.C., Winyard, P.J., and Woolf, A.S. (2001). Galectin-3 modulates ureteric bud branching in organ culture of the developing mouse kidney. J Am Soc Nephrol 12, 515-523.

    Cavallo, T., Sade, R., Folkman, J., and Cotran, R.S. (1972). Tumor angiogenesis. Rapid induction of endothelial mitoses demonstrated by autoradiography. J Cell Biol 54, 408-420.

    Dameron, K.M., Volpert, O.V., Tainsky, M.A., and Bouck, N. (1994). Control of angiogenesis in fibroblasts by p53 regulation of thrombospondin-1. Science 265, 1582-1584.

    Dings, R.P., Arroyo, M.M., Lockwood, N.A., van Eijk, L.I., Haseman, J.R., Griffioen, A.W., and Mayo, K.H. (2003a). Beta-sheet is the bioactive conformation of the anti-angiogenic anginex peptide. Biochem J 373, 281-288.

    Dings, R.P., van der Schaft, D.W., Hargittai, B., Haseman, J., Griffioen, A.W., and Mayo, K.H. (2003b). Anti-tumor activity of the novel angiogenesis inhibitor anginex. Cancer Lett 194, 55-66.

    Drickamer, K. (1988). Two distinct classes of carbohydrate-recognition domains in animal lectins. J Biol Chem 263, 9557-9560.

    Ezzell, C. (1998). Starving tumors of their lifeblood. Sci Am 279, 33-34.

    Folkman, J. (1971). Tumor angiogenesis: therapeutic implications. N Engl J Med 285, 1182-1186.

    Folkman, J. (2004). Endogenous angiogenesis inhibitors. APMIS 112, 496-507.
    Folkman, J. (2006). Angiogenesis. Annu Rev Med 57, 1-18.

    Folkman, J., and Kalluri, R. (2004). Cancer without disease. Nature 427, 787.

    Gimbrone, M.A., Jr., Leapman, S.B., Cotran, R.S., and Folkman, J. (1973). Tumor angiogenesis: iris neovascularization at a distance from experimental intraocular tumors. J Natl Cancer Inst 50, 219-228.

    Griffioen, A.W., van der Schaft, D.W., Barendsz-Janson, A.F., Cox, A., Struijker Boudier, H.A., Hillen, H.F., and Mayo, K.H. (2001). Anginex, a designed peptide that inhibits angiogenesis. Biochem J 354, 233-242.

    Gupta, S.K., and Singh, J.P. (1994). Inhibition of endothelial cell proliferation by platelet factor-4 involves a unique action on S phase progression. J Cell Biol 127, 1121-1127.

    Homandberg, G.A., Williams, J.E., Grant, D., Schumacher, B., and Eisenstein, R. (1985). Heparin-binding fragments of fibronectin are potent inhibitors of endothelial cell growth. Am J Pathol 120, 327-332.

    Houzelstein, D., Goncalves, I.R., Fadden, A.J., Sidhu, S.S., Cooper, D.N., Drickamer, K., Leffler, H., and Poirier, F. (2004). Phylogenetic analysis of the vertebrate galectin family. Mol Biol Evol 21, 1177-1187.

    Ingber, D., Fujita, T., Kishimoto, S., Sudo, K., Kanamaru, T., Brem, H., and Folkman, J. (1990). Synthetic analogues of fumagillin that inhibit angiogenesis and suppress tumour growth. Nature 348, 555-557.

    John, C.M., Jarvis, G.A., Swanson, K.V., Leffler, H., Cooper, M.D., Huflejt, M.E., and Griffiss, J.M. (2002). Galectin-3 binds lactosaminylated lipooligosaccharides from Neisseria gonorrhoeae and is selectively expressed by mucosal epithelial cells that are infected. Cell Microbiol 4, 649-662.

    Kobayashi, H., and Brechbiel, M.W. (2004). Dendrimer-based nanosized MRI contrast agents. Curr Pharm Biotechnol 5, 539-549.

    Kobayashi, H., Jo, S.K., Kawamoto, S., Yasuda, H., Hu, X., Knopp, M.V., Brechbiel, M.W., Choyke, P.L., and Star, R.A. (2004a). Polyamine dendrimer-based MRI contrast agents for functional kidney imaging to diagnose acute renal failure. J Magn Reson Imaging 20, 512-518.

    Kobayashi, H., Kawamoto, S., Jo, S.K., Bryant, H.L., Jr., Brechbiel, M.W., and Star, R.A. (2003). Macromolecular MRI contrast agents with small dendrimers: pharmacokinetic differences between sizes and cores. Bioconjug Chem 14, 388-394.

    Kobayashi, H., Kawamoto, S., Sakai, Y., Choyke, P.L., Star, R.A., Brechbiel, M.W., Sato, N., Tagaya, Y., Morris, J.C., and Waldmann, T.A. (2004b). Lymphatic drainage imaging of breast cancer in mice by micro-magnetic resonance lymphangiography using a nano-size paramagnetic contrast agent. J Natl Cancer Inst 96, 703-708.

    Mayo, K.H., Dings, R.P., Flader, C., Nesmelova, I., Hargittai, B., van der Schaft, D.W., van Eijk, L.I., Walek, D., Haseman, J., Hoye, T.R., et al. (2003). Design of a partial peptide mimetic of anginex with antiangiogenic and anticancer activity. J Biol Chem 278, 45746-45752.

    Moore, A., Sun, P.Z., Cory, D., Hogemann, D., Weissleder, R., and Lipes, M.A. (2002). MRI of insulitis in autoimmune diabetes. Magn Reson Med 47, 751-758.

    Nelson, J., Allen, W.E., Scott, W.N., Bailie, J.R., Walker, B., McFerran, N.V., and Wilson, D.J. (1995). Murine epidermal growth factor (EGF) fragment (33-42) inhibits both EGF- and laminin-dependent endothelial cell motility and angiogenesis. Cancer Res 55, 3772-3776.

    Nyberg, P., Xie, L., and Kalluri, R. (2005). Endogenous inhibitors of angiogenesis. Cancer Res 65, 3967-3979.

    Park, J.W., Voss, P.G., Grabski, S., Wang, J.L., and Patterson, R.J. (2001). Association of galectin-1 and galectin-3 with Gemin4 in complexes containing the SMN protein. Nucleic Acids Res 29, 3595-3602.

    Perillo, N.L., Pace, K.E., Seilhamer, J.J., and Baum, L.G. (1995). Apoptosis of T cells mediated by galectin-1. Nature 378, 736-739.

    Pilch, J., Franzin, C.M., Knowles, L.M., Ferrer, F.J., Marassi, F.M., and Ruoslahti, E. (2006). The anti-angiogenic peptide anginex disrupts the cell membrane. J Mol Biol 356, 876-885.

    Rosenblum, L.T., Kosaka, N., Mitsunaga, M., Choyke, P.L., and Kobayashi, H. (2010). In vivo molecular imaging using nanomaterials: General in vivo characteristics of nano-sized reagents and applications for cancer diagnosis (Review). Mol Membr Biol.

    Rupnick, M.A., Panigrahy, D., Zhang, C.Y., Dallabrida, S.M., Lowell, B.B., Langer, R., and Folkman, M.J. (2002). Adipose tissue mass can be regulated through the vasculature. Proc Natl Acad Sci U S A 99, 10730-10735.

    Sato, Y., Abe, M., and Takaki, R. (1990). Platelet factor 4 blocks the binding of basic fibroblast growth factor to the receptor and inhibits the spontaneous migration of vascular endothelial cells. Biochem Biophys Res Commun 172, 595-600.

    Satoh, S., Takahashi, K., and Sakuragawa, N. (1993). Thrombospondin as an agglutinin of platelets. Thromb Res 72, 509-517.

    Scott, K., and Weinberg, C. (2004). Galectin-1: a bifunctional regulator of cellular proliferation. Glycoconj J 19, 467-477.

    Sharpe, R.J., Byers, H.R., Scott, C.F., Bauer, S.I., and Maione, T.E. (1990). Growth inhibition of murine melanoma and human colon carcinoma by recombinant human platelet factor 4. J Natl Cancer Inst 82, 848-853.

    Sidky, Y.A., and Borden, E.C. (1987). Inhibition of angiogenesis by interferons: effects on tumor- and lymphocyte-induced vascular responses. Cancer Res 47, 5155-5161.

    Taylor, S., and Folkman, J. (1982). Protamine is an inhibitor of angiogenesis. Nature 297, 307-312.

    Tolsma, S.S., Volpert, O.V., Good, D.J., Frazier, W.A., Polverini, P.J., and Bouck, N. (1993). Peptides derived from two separate domains of the matrix protein thrombospondin-1 have anti-angiogenic activity. J Cell Biol 122, 497-511.

    van der Schaft, D.W., Dings, R.P., de Lussanet, Q.G., van Eijk, L.I., Nap, A.W., Beets-Tan, R.G., Bouma-Ter Steege, J.C., Wagstaff, J., Mayo, K.H., and Griffioen, A.W. (2002). The designer anti-angiogenic peptide anginex targets tumor endothelial cells and inhibits tumor growth in animal models. FASEB J 16, 1991-1993.

    Wu, P.C., Su, C.H., Cheng, F.Y., Weng, J.C., Chen, J.H., Tsai, T.L., Yeh, C.S., Su, W.C., Hwu, J.R., Tzeng, Y., et al. (2008). Modularly assembled magnetite nanoparticles enhance in vivo targeting for magnetic resonance cancer imaging. Bioconjug Chem 19, 1972-1979.

    無法下載圖示 校內:2015-08-11公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE