簡易檢索 / 詳目顯示

研究生: 吳文馨
Wu, Wen-Hsin
論文名稱: 功能性奈米滴管探針之製備於電化學分析之應用
Fabrication of Functionalized Nanopipette for Nanoscale Electroanalysis
指導教授: 陳巧貞
Chen, Chiao-Chen
學位類別: 碩士
Master
系所名稱: 理學院 - 化學系
Department of Chemistry
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 94
中文關鍵詞: 奈米滴管奈米碳電極掃描離子電導顯微鏡
外文關鍵詞: nanopipette, carbon nanoelectrode, SICM
相關次數: 點閱:61下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 奈米滴管(Nanopipette)廣泛應用於電生理研究、顯微注射(Microinjection)、電化學分析與掃描探針顯微術(Scanning probe microscopy technique),通常是由玻璃或石英毛細管透過雷射或鎢絲拉針器拉製而成,藉由參數的調整可以獲得適合的管壁厚度及開口大小,使得不同幾何形狀之奈米滴管有許多不同的用途。高靈敏度與高空間解析度為奈米電極於局部電化學量測中的重要優勢,為了達到上述之特性,必須對奈米滴管進行改質,因此在本研究中主要製備兩種類型之功能化奈米滴管,分別是(1)矽烷化奈米滴管:作為日後製備具有高靈敏度及專一性感測器之基礎,主要是將3-氨基丙基三甲氧基矽烷(APTMS)氣相修飾於奈米滴管內表面,作為固定生物分子之橋梁;(2)奈米碳電極(Carbon nanopipetts,CNPs):利用簡單、快速且成本較低的裝置,將丁烷氣體泵送至奈米滴管內並於奈米滴管尖端處燃燒,在其內部沉積熱解碳以形成實心盤型奈米碳電極,電極將應用於電化學分析。使用掃描電子顯微鏡(SEM)及電化學分析儀鑑定奈米滴管之幾何形狀及電化學性質,得到與未修飾之奈米滴管相反之離子電流整流趨勢。為了獲得掃描離子電導顯微鏡(SICM)之偵測極限,使用鉻/金薄膜作為檢測樣品,從結果得知,奈米滴管探針之孔徑尺寸越小之奈米滴管探針,形貌影像解析度越高。後續將開發將SICM與掃描電化學顯微鏡(SECM)聯用系統,使用雙通道奈米碳電極作為探針,以利同時得到樣品形貌及電化學成像。

    Nanopipettes with a tip opening in the nanoscale regime have found significant applications in diverse research fields, ranging from electrophysiological studies, electrochemical analysis, microinjection and electrospray apparatus. These pipettes are typically fabricated by using a laser puller to heat and pull a capillary tube into two identical pipettes at once. By using capillary tubes with suitable wall thicknesses and diameters, pipettes with various geometries can be obtained for different applications. To further extend the application of nanopipettes as a reliable sensing probe, appropriate pipette modifications are inventible and are crucial to whether an effective detection method that can offer high sensitivity, specificity and spatial resolution can be successfully established. Herein, we focused on the fabrication of two types of functionalized nanopipettes, namely (1) silylated nanopipettes for bioanalysis and (2) carbon nanopipettes (CNPs) for nanoscale electrochemical analysis. Also, scanning electron microscopy (SEM) and electrochemical analyzer were applied for the determination of the exact geometry and electrochemical properties of nanopipettes. To obtain detection limit of scanning ion conductance microscopy, we utilize metal film for test sample. According to our results, it was found that when the pore size of nanopipettes decrease, the resolution of image increase. After that, we employed double-barrel CNPs as SICM-SECM probes which can be used for simultaneously topographical and electrochemical imaging.

    中文摘要 I Extended Abstracts II 致謝 VII 目錄 VIII 表目錄 X 圖目錄 XI 第1章 緒論與動機 1 1.1 滴管探針簡介 1 1.2 研究動機 2 第2章 文獻回顧 4 2.1 離子電流整流效應(Ion current rectification effect,ICR) 4 2.1.1 電雙層(Electrical double layers, EDL) 4 2.1.2 孔徑尺寸 7 2.1.3 溶液pH值 12 2.2 奈米滴管感測器(Pipette-based sensor) 15 2.3 超微電極(Ultramicroelectrodes) 16 2.4 掃描離子電導顯微鏡(Scanning ion conductance microscopy,SICM) 20 2.4.1 離子電流(Ion current) 21 2.4.2 回饋控制模式(Feedback mode) 22 2.4.3 SICM的應用 24 2.5 掃描電化學顯微鏡(Scanning electrochemical microscopy,SECM) 27 2.5.1 回饋模式(Feedback mode) 27 2.5.2 掃描模式 29 2.5.3 探針製備 30 2.6 掃描離子電導‒掃描電化學顯微鏡(Scanning ion conductance-Scanning electrochemical microscopy, SICM-SECM) 32 第3章 實驗方法與材料 34 3.1 實驗步驟流程 34 3.2 奈米滴管的製備與鑑定 35 3.2.1 毛細管清潔 35 3.2.2 奈米滴管拉製 35 3.2.3 鑑定奈米滴管之幾何形狀 41 3.2.4 奈米滴管探針的組裝 42 3.2.5 鑑定滴管探針之電化學性質 45 3.3 製備表面功能化之奈米滴管 47 3.4 奈米碳電極之製備與性質鑑定 49 3.4.1 奈米碳電極製備流程 49 3.4.2 奈米碳電極之電化學性質鑑定 49 3.4.3 奈米碳電極之形貌鑑定與組成分析 50 3.5 掃描離子電導顯微鏡架設裝置 50 第4章 結果與討論 53 4.1 奈米滴管尖端孔徑及幾何形狀 53 4.2 離子電流變化 59 4.2.1 KCl濃度效應 59 4.2.2 溶液pH值效應 61 4.3 功能化奈米滴管 62 4.3.1 表面修飾 62 4.3.2 修飾矽烷條件 64 4.4 碳電極 66 4.4.1 沉積裝置改良 66 4.4.2 掃描式電子顯微鏡及掃描式穿透電子顯微鏡 67 4.4.3 循環伏安法 71 4.4.4 氮氣流速測試 73 4.4.5 氧化還原物質濃度變化 74 4.5 SICM 75 4.5.1 表面形貌掃描 75 第5章 結論 81 第6章 參考資料 83 第7章 附錄 88

    1. Umehara, S.; Pourmand, N.; Webb, C. D.; Davis, R. W.; Yasuda, K.; Karhanek, M., Current rectification with poly-l-lysine-coated quartz nanopipettes. Nano Lett. 2006, 6, 2486-2492.
    2. Fu, Y.; Tokuhisa, H.; Baker, L. A., Nanopore DNA sensors based on dendrimer-modified nanopipettes. Chem. Commun. 2009, 4877-4879.
    3. Piper, J. D.; Clarke, R. W.; Korchev, Y. E.; Ying, L.; Klenerman, D., A renewable nanosensor based on a glass nanopipette. J. Am. Chem. Soc. 2006, 128, 16462-16463.
    4. Schrlau, M. G.; Dun, N. J.; Bau, H. H., Cell electrophysiology with carbon nanopipettes. ACS nano 2009, 3, 563-568.
    5. Rees, H. R.; Anderson, S. E.; Privman, E.; Bau, H. H.; Venton, B. J., Carbon nanopipette electrodes for dopamine detection in Drosophila. Anal. Chem. 2015, 87, 3849-3855.
    6. Molleman, A., Patch clamping: an introductory guide to patch clamp electrophysiology. John Wiley & Sons: 2003.
    7. Hansma, P. K.; Drake, B.; Marti, O.; Gould, S.; Prater, C., The scanning ion-conductance microscope. Science 1989, 243, 641-643.
    8. Bard, A. J.; Fan, F. R. F.; Pierce, D. T.; Unwin, P. R.; Wipf, D. O.; Zhou, F., Chemical imaging of surfaces with the scanning electrochemical microscope. Science 1991, 254, 68-74.
    9. Binnig, G.; Quate, C. F.; Gerber, C., Atomic force microscope. Phys. Rev. Lett. 1986, 56, 930.
    10. An, S.; Stambaugh, C.; Kim, G.; Lee, M.; Kim, Y.; Lee, K.; Jhe, W., Low-volume liquid delivery and nanolithography using a nanopipette combined with a quartz tuning fork-atomic force microscope. Nanoscale 2012, 4, 6493-6500.
    11. Shevchuk, A. I.; Frolenkov, G. I.; Sánchez, D.; James, P. S.; Freedman, N.; Lab, M. J.; Jones, R.; Klenerman, D.; Korchev, Y. E., Imaging proteins in membranes of living cells by high‐resolution scanning ion conductance microscopy. Angew. Chem. 2006, 118, 2270-2274.
    12. Pum, D.; Sleytr, U. B., Reassembly of S-layer proteins. Nanotechnology 2014, 25, 312001.
    13. Takahashi, Y.; Shevchuk, A. I.; Novak, P.; Zhang, Y.; Ebejer, N.; Macpherson, J. V.; Unwin, P. R.; Pollard, A. J.; Roy, D.; Clifford, C. A., Multifunctional nanoprobes for nanoscale chemical imaging and localized chemical delivery at surfaces and interfaces. Angew. Chem. Int. Ed. 2011, 50, 9638-9642.
    14. Schrlau, M. G.; Bau, H. H., Carbon-based nanoprobes for cell biology. Microfluid Nanofluidics 2009, 7, 439.
    15. Zhang, B.; Galusha, J.; Shiozawa, P. G.; Wang, G.; Bergren, A. J.; Jones, R. M.; White, R. J.; Ervin, E. N.; Cauley, C. C.; White, H. S., Bench-top method for fabricating glass-sealed nanodisk electrodes, glass nanopore electrodes, and glass nanopore membranes of controlled size. Anal. Chem. 2007, 79, 4778-4787.
    16. Velmurugan, J.; Sun, P.; Mirkin, M. V., Scanning electrochemical microscopy with gold nanotips: the effect of electrode material on electron transfer rates. J. Phys. Chem. C 2008, 113, 459-464.
    17. Mezour, M. A.; Morin, M.; Mauzeroll, J., Fabrication and characterization of laser pulled platinum microelectrodes with controlled geometry. Anal. Chem. 2011, 83, 2378-2382.
    18. Özel, R. E.; Lohith, A.; Mak, W. H.; Pourmand, N., Single-cell intracellular nano-pH probes. RSC Adv. 2015, 5, 52436-52443.
    19. Morris, C. A.; Chen, C. C.; Ito, T.; Baker, L. A., Local pH measurement with scanning ion conductance microscopy. J. Electrochem. Soc. 2013, 160, H430-H435.
    20. Russel, W. B.; Russel, W.; Saville, D. A.; Schowalter, W. R., Colloidal dispersions. Cambridge university press: 1991.
    21. Wei, C.; Bard, A. J.; Feldberg, S. W., Current rectification at quartz nanopipet electrodes. Anal. Chem. 1997, 69, 4627-4633.
    22. Bard, A. J.; Faulkner, L. R.; Leddy, J.; Zoski, C. G., Electrochemical methods: fundamentals and applications. wiley New York: 1980; Vol. 2.
    23. Wu, J.; Risalvato, F. G.; Ke, F. S.; Pellechia, P.; Zhou, X. D., Electrochemical reduction of carbon dioxide I. Effects of the electrolyte on the selectivity and activity with Sn electrode. J. Electrochem. Soc. 2012, 159, F353-F359.
    24. Sulpizi, M.; Gaigeot, M. P.; Sprik, M., The Silica–Water Interface: How the Silanols Determine the Surface Acidity and Modulate the Water Properties. J. Chem. Theory Comput. 2012, 8, 1037-1047.
    25. Siwy, Z. S., Ion‐current rectification in nanopores and nanotubes with broken symmetry. Adv. Funct. Mater. 2006, 16, 735-746.
    26. Siwy, Z.; Heins, E.; Harrell, C. C.; Kohli, P.; Martin, C. R., Conical-nanotube ion-current rectifiers: the role of surface charge. J. Am. Chem. Soc. 2004, 126, 10850-10851.
    27. Actis, P.; Mak, A. C.; Pourmand, N., Functionalized nanopipettes: toward label-free, single cell biosensors. Bioanal. Rev. 2010, 1, 177-185.
    28. Umehara, S.; Karhanek, M.; Davis, R. W.; Pourmand, N., Label-free biosensing with functionalized nanopipette probes. Proc. Natl. Acad. Sci. U.S.A. 2009, 106, 4611-4616.
    29. Tiwari, P. B.; Astudillo, L.; Miksovska, J.; Wang, X.; Li, W.; Darici, Y.; He, J., Quantitative study of protein–protein interactions by quartz nanopipettes. Nanoscale 2014, 6, 10255-10263.
    30. Monk, P. M., Fundamentals of electroanalytical chemistry. John Wiley & Sons: 2008; Vol. 29.
    31. Bard, A. J.; Faulkner, L. R., Electrochemical methods: fundamentals and applications. Wiley: 2001.
    32. Kwak, J.; Bard, A. J., Scanning electrochemical microscopy. Theory of the feedback mode. Anal. Chem. 1989, 61, 1221-1227.
    33. Montenegro, I.; Queirós, M. A.; Daschbach, J. L., Microelectrodes: theory and applications. Springer Science & Business Media: 2012; Vol. 197.
    34. Walsh, D. A.; Lovelock, K. R.; Licence, P., Ultramicroelectrode voltammetry and scanning electrochemical microscopy in room-temperature ionic liquid electrolytes. Chem. Soc. Rev. 2010, 39, 4185-4194.
    35. Chen, C. C.; Zhou, Y.; Baker, L. A., Scanning ion conductance microscopy. Annu. Rev. Anal. Chem. 2012, 5, 207-228.
    36. Korchev, Y. E.; Bashford, C. L.; Milovanovic, M.; Vodyanoy, I., Scanning ion conductance microscopy of living cells. Biophys. J. 1997, 73, 653-658.
    37. Shevchuk, A. I.; Gorelik, J.; Harding, S. E.; Klenerman, D.; Korchev, Y. E., Simultaneous measurement of Ca2+ and cellular dynamics: combined scanning ion conductance and optical microscopy to study contracting cardiac myocytes. Biophys. J. 2001, 81, 1759-1764.
    38. Rheinlaender, J.; Geisse, N. A.; Proksch, R.; Schäffer, T. E., Comparison of scanning ion conductance microscopy with atomic force microscopy for cell imaging. Langmuir 2010, 27, 697-704.
    39. Novak, P.; Li, C.; Shevchuk, A. I.; Stepanyan, R.; Caldwell, M.; Hughes, S.; Smart, T. G.; Gorelik, J.; Ostanin, V. P.; Lab, M. J.; Moss, G. W. J.; Frolenkov, G. I.; Klenerman, D.; Korchev, Y. E., Nanoscale live-cell imaging using hopping probe ion conductance microscopy. Nature Methods 2009, 6, 279.
    40. Rheinlaender, J.; Schäffer, T. E., Image formation, resolution, and height measurement in scanning ion conductance microscopy. J. Appl. Phys. 2009, 105, 094905.
    41. Gorelik, J.; Zhang, Y.; Shevchuk, A. I.; Frolenkov, G. I.; Sánchez, D.; Vodyanoy, I.; Edwards, C. R.; Klenerman, D.; Korchev, Y. E., The use of scanning ion conductance microscopy to image A6 cells. Mol. Cell. Endocrinol. 2004, 217, 101-108.
    42. Bard, A. J.; Fan, F. R. F.; Kwak, J.; Lev, O., Scanning electrochemical microscopy. Introduction and principles. Anal. Chem. 1989, 61, 132-138.
    43. Mirkin, M. V.; Horrocks, B. R., Electroanalytical measurements using the scanning electrochemical microscope. Anal. Chim. Acta 2000, 406, 119-146.
    44. Bard, A. J.; Mirkin, M. V., Scanning electrochemical microscopy. CRC Press: 2012.
    45. Bergner, S.; Vatsyayan, P.; Matysik, F.-M., Recent advances in high resolution scanning electrochemical microscopy of living cells–a review. Anal. Chim. Acta 2013, 775, 1-13.
    46. Amemiya, S.; Bard, A. J.; Fan, F.-R. F.; Mirkin, M. V.; Unwin, P. R., Scanning electrochemical microscopy. Annu. Rev. Anal. Chem. 2008, 1, 95-131.
    47. Ballesteros Katemann, B.; Schulte, A.; Schuhmann, W., Constant‐Distance Mode Scanning Electrochemical Microscopy (SECM)—Part I: Adaptation of a Non‐Optical Shear‐Force‐Based Positioning Mode for SECM Tips. Chem. Eur. J. 2003, 9, 2025-2033.
    48. Kim, B.; Murray, T.; Bau, H., The fabrication of integrated carbon pipes with sub-micron diameters. Nanotechnology 2005, 16, 1317.
    49. Schrlau, M. G.; Falls, E. M.; Ziober, B. L.; Bau, H. H., Carbon nanopipettes for cell probes and intracellular injection. Nanotechnology 2007, 19, 015101.
    50. Anderson, S. E.; Bau, H. H., Electrical detection of cellular penetration during microinjection with carbon nanopipettes. Nanotechnology 2014, 25, 245102.
    51. Actis, P.; Tokar, S.; Clausmeyer, J.; Babakinejad, B.; Mikhaleva, S.; Cornut, R.; Takahashi, Y.; López Córdoba, A.; Novak, P.; Shevchuck, A. I.; Dougan, J. A.; Kazarian, S. G.; Gorelkin, P. V.; Erofeev, A. S.; Yaminsky, I. V.; Unwin, P. R.; Schuhmann, W.; Klenerman, D.; Rusakov, D. A.; Sviderskaya, E. V.; Korchev, Y. E., Electrochemical Nanoprobes for Single-Cell Analysis. ACS Nano 2014, 8, 875-884.
    52. Clausmeyer, J.; Masa, J.; Ventosa, E.; Öhl, D.; Schuhmann, W., Nanoelectrodes reveal the electrochemistry of single nickelhydroxide nanoparticles. Chem. Commun. 2016, 52, 2408-2411.
    53. Kueng, A.; Kranz, C.; Lugstein, A.; Bertagnolli, E.; Mizaikoff, B., Integrated AFM–SECM in tapping mode: simultaneous topographical and electrochemical imaging of enzyme activity. Angew. Chem. Int. Ed. 2003, 42, 3238-3240.
    54. Şen, M.; Takahashi, Y.; Matsumae, Y.; Horiguchi, Y.; Kumatani, A.; Ino, K.; Shiku, H.; Matsue, T., Improving the electrochemical imaging sensitivity of scanning electrochemical microscopy-scanning ion conductance microscopy by using electrochemical Pt deposition. Anal. Chem. 2015, 87, 3484-3489.
    55. Wang, Y.; Wang, D.; Mirkin, M. V., Resistive-pulse and rectification sensing with glass and carbon nanopipettes. Proc. R. Soc. A 2017, 473, 20160931.
    56. Sulpizi, M.; Gaigeot, M.-P.; Sprik, M. J. J. o. c. t.; computation, The silica–water interface: how the silanols determine the surface acidity and modulate the water properties. 2012, 8, 1037-1047.

    無法下載圖示 校內:2024-01-29公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE