簡易檢索 / 詳目顯示

研究生: 簡育群
Chien, Yu-Chun
論文名稱: 以改良式溶膠凝膠法製備Pb(Zr0.52Ti0.48)O3壓電厚膜應用於MEMS壓電加速規之研究
Study of Pb(Zr0.52Ti0.48)O3 Piezoelectric Thick Films via a Modified Sol-Gel Method for MEMS Piezoelectric Accelerometer Applications
指導教授: 朱聖緣
Chu, Sheng-Yuan
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 98
中文關鍵詞: 溶膠凝膠法壓電厚膜MEMS加速規
外文關鍵詞: Sol-gel, PZT, Piezoelectric thick film, Vacuum infiltration, MEMS, Accelerometer
相關次數: 點閱:59下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文利用改良式溶膠凝膠法製備Pb(Zr0.52Ti0.48)O3壓電厚膜應用於MEMS壓電加速規,透過將壓電粉末混合於溶膠凝膠溶液中,提高單層塗佈的膜厚,藉由不同焦化時間、退火燒結溫度、真空滲透壓力的改變,探討壓電厚膜對於XRD、SEM、AFM、εr、tanδ、P-E、d33之影響,從中找尋適合應用於MEMS壓電加速規之材料特性,並透過數學模型、ANSYS軟體分析與實際量測,比較MEMS壓電加速規之共振頻率差異,同時實際應用於工具機主軸震動量測。
    本研究發現藉由改變不同的熱參數,會使得厚膜結晶特性與晶粒大小的改變,進而影響其電特性的表現,同時建立真空滲透模型,比較不同滲透壓力在表面微結構的變化,探討對其電特性的改變,最後從中找出最佳參數製備出,在頻率1kHz下介電常數εr 1519、介電損耗tanδ 0.029,在電場350kV/cm下殘餘極化量Pr 39.524μC/cm2,壓電係數d33 91.3pm/V 之Pb(Zr0.52Ti0.48)O3厚膜。
    在元件端探討不同結構變化,比較數學模型、ANSYS軟體分析與實際量測共振頻之差異,同時藉由有效厚度heff之數學公式模擬弧形Si膜層對共振頻率之影響,使得數學理論值更加貼近實際量測,最後環形結構製作出共振頻率6.5~7.1kHz,靈敏度2.21~2.14mV/g之MEMS壓電加速規,同時搭配放大電路實際應用於主軸量測。

    In this study, piezoelectric Pb(Zr0.52Ti0.48)O3(PZT) thick films were fabricated on Pt-coated Si substrates by a modified sol-gel method through uniformly dispersing commercial PZT-5H powders in the sol-gel solution. This modified method can help to increase a single coating thickness, reduce coating time and improve electric characteristics of the proposed thick films. With changing the annealing and sintering temperature and the pressure of vacuum infiltration, we found that the dielectric, ferroelectric and piezoelectric properties of the films were strongly dependent on the microstructure and the crystallinity. The grain sizes which filled the surface pores of the films increased with increasing annealing sintering temperature result in the roughness decreasing. However, over large grains caused surface roughness rising, again and the secondary phase formed at 750℃. On the other hand, the over high pressure of vacuum infiltration would cause sol-gel solution evaporate and accumulate on the films’ surface affecting the microstructure and the crystallinity. Finally, the optimized films at 700℃ annealing sintering temperature and 10.34 psi vacuum pressure had the dielectric constant of 1519 (at 1kHz), the dielectric loss of 0.029 (at 1kHz), the remanent polarization of 39.524 μC/cm2 (at 350kV/cm), and the piezoelectric coefficient of 91.3pm/V.
    Piezoelectric MEMS accelerometers had been designed and fabricated through micromachining techniques on Si substrates. The resonance frequency of devices was via altering the ring structure of accelerometers and calculated with math theory and ANSYS software. Meanwhile, the values would be compared with the experimental data. On the other hand, we proposed a modified math theory. Using effective thickness of Si membrane, heff replaced the thickness of Si membrane in the original math theory. The resonance frequency calculated using this modified math theory would be closer to the values of the experimental data than using the original math theory. Finally, the fabricated accelerometers based on the proposed PZT thick films with best properties in this study had voltage sensitivities in the range of 2.21~2.14mV/g and resonance frequency in the range of 6.5~7.1 kHz. In addition, the devices were really used in vibration detection of mechanical motors.

    中文摘要 II Extend Abstratct III 致謝 X 表目錄 XV 圖目錄 XVI 第一章 緒論 1 1.1 前言 1 1.2 研究動機 2 1.3 論文架構 3 第二章 基礎理論與文獻回顧 4 2.1壓電材料 5 2.1.1材料晶格與晶系 5 2.1.2介電效應 6 2.1.3壓電效應 8 2.1.4鐵電效應 10 2.1.5壓電材料 11 2.1.6鈦鋯酸鉛 12 2.2壓電厚膜 13 2.2.1壓電厚膜製成種類 13 2.2.2改良式溶膠凝膠法 13 2.3 MEMS壓電加速規 15 2.3.1加速規 15 2.3.2加速規種類 15 2.3.3 MEMS壓電加速規 17 2-4溶膠凝膠法 20 2.4.1溶膠凝膠法原理 20 2.4.2製程方式 21 第三章 實驗方法與量測 23 3.1實驗流程 23 3.2實驗步驟 24 3.2.1基板清洗 24 3.2.2下電極沉積 25 3.2.3 溶液配製 26 3.2.4厚膜塗佈 28 3.2.5黃光微影蝕刻 29 3.3製程量測儀器 30 3.3.1 行星式球磨機 30 3.3.2 旋轉塗佈機 30 3.3.3 加熱平台 31 3.3.4 RTA快速退火爐 31 3.3.5 高溫爐 32 3.3.6 阻抗分析儀 32 3.3.7 鐵電分析儀 33 3.3.8 XRD 33 3.3.9 SEM 34 3.3.10 AFM 34 3.3.11 曝光機 35 3.3.12 感應耦合式蝕刻系統 35 3.3.13 振盪量測系統 36 第四章 實驗結果與討論 37 4.1 PZT 5H壓電粉末分析 37 4.1.1 壓電粉末選用與燒結溫度XRD分析 37 4.1.2 粒徑分析 40 4.2焦化時間對厚膜沉積之電性影響 42 4.2.1 XRD分析 42 4.2.2 介電(εr-tanδ)分析 44 4.2.3鐵電(P-E)分析 46 4.2.4小節總結 47 4.3退火燒結溫度對厚膜沉積之微結構與電性影響 48 4.3.1 XRD分析 48 4.3.2 SEM分析 50 4.3.3 AFM分析 51 4.3.4 介電(εr-tanδ)分析 53 4.3.5鐵電(P-E)分析 55 4.3.6壓電係數d33分析 57 4.3.7 小節總結 58 4.4不同滲透壓力對厚膜沉積之微結構與電性影響 59 4.4.1真空滲透模型 59 4.4.2 XRD分析 61 4.4.3 SEM分析 63 4.4.4 AFM分析 66 4.4.5 介電(εr-tanδ)分析 68 4.4.6 鐵電(P-E)分析 70 4.4.7壓電係數d33分析 72 4.4.8 小節總結 73 4.5加速規理論模擬分析與實際量測 74 4.5.1 環形加速規數學模擬與ANSYS分析 74 4.5.2 實際量測 80 4.5.3 數學公式修正 84 4.5.4 小節總結 87 4.6 MEMS壓電加速規應用於工具機主軸量測 88 第五章 結論與未來展望 91 5.1 結論 91 5.1.1 PZT壓電厚膜 91 5.1.2 環形MEMS壓電加速規 91 5.2 未來展望 92 參考文獻 93 表目錄 表2-1 七大晶系分類表 5 表2-2 近年MEMS壓電加速規研究文獻整理 19 表3-1 濺鍍參數 25 表3-2 實驗藥品 26 表4-1 PZT 粉末不同燒結溫度之FWHM比較表 39 表4-2 PZT壓電厚膜在不同焦化時間之FWHM比較表 43 表4-3 PZT壓電厚膜在不同退火燒結溫度之FWHM比較表 49 表4-4 PZT壓電厚膜在不同滲透壓力之FWHM比較表 62 表4-5 1μm之壓電厚膜文獻比較表 73 表4-6固定Si膜層厚度h=30μm與質量塊寬度r1=1000μm不同Si膜層半徑r2之An-alysis與數學公式共振頻率分析比較表 79 表4-7固定h=30μm ANSYS分析、數學公式與實際量測共振頻比較表 84 表4-8 ANSYS分析與數學公式新舊模擬和實際量測共振頻比較表 87 圖目錄 圖2-1 晶格點群特性分布圖 5 圖2-2 介電響應頻譜圖[15] 7 圖2-3 正壓電效應[17] 8 圖2-4 逆壓電效應[17] 8 圖2-5 方向定義示意圖[18] 9 圖2-6 電滯曲線[19] 10 圖2-7 鈣鈦礦結構示意圖 12 圖2-8 不同Zr/Ti比例之鈦鋯酸鉛壓電特性比較圖[21] 12 圖2-9 PZT厚膜SEM圖[25] 14 圖2-10 厚膜滲透14次前後SEM比較圖[27] 14 圖2-11 MEMS電容式加速規結構圖[34] 16 圖2-12 MEMS壓阻式加速規結構圖[35] 16 圖2-13 MEMS壓電式加速規結構圖[36] 16 圖2-14 十字結構示意圖[22] 18 圖2-15 環形結構頗面圖[44] 18 圖2-16 溶膠凝膠法製程與應用[51] 20 圖2-17浸塗法流程示意圖[52] 21 圖2-18旋轉塗佈法流程示意圖[53] 22 圖3-1 實驗流程圖 23 圖3-2 基板清洗流程圖 24 圖3-3 改良式溶膠凝膠法混合壓電粉末製成壓電厚膜流程圖 27 圖3-4 厚膜塗佈流程圖 28 圖3-5 MEMS環形壓電加速規製程流程圖 29 圖3-6 行星式球磨機 30 圖3-7 旋轉塗佈機 30 圖3-8 加熱平台 31 圖3-9 快速退火爐 31 圖3-10 箱型高溫爐 32 圖3-11 阻抗分析儀 32 圖3-12 鐵電分析儀 33 圖3-13 XRD 33 圖3-14 SEM 34 圖3-15 AFM 34 圖3-16 曝光機 35 圖3-17 感應耦合式蝕刻系統 35 圖3-18 振盪量測系統 36 圖4-1 PZT 5H粉末不同燒結溫度之XRD圖 38 圖4-2 磁石攪拌單層塗佈厚膜SEM圖 40 圖4-3行星式球磨機單層塗佈SEM圖 40 圖4-4 不同轉速製備之壓電粉末粒徑分析圖 41 圖4-5 PZT壓電厚膜在不同焦化時間之XRD圖 43 圖4-6 不同焦化時間之介電常數εr對頻率關係圖 45 圖4-7 不同焦化時間之介電損耗tanδ對頻率關係圖 45 圖4-8 不同焦化時間之電滯曲線圖 46 圖4-9 不同焦化時間之殘餘極化量Pr對外加電場關係圖 47 圖4-10 PZT壓電厚膜在不同退火燒結溫度之XRD圖 49 圖4-11 PZT壓電厚膜在不同退火燒結溫度之SEM表面樣貌圖 50 圖4-12 PZT壓電厚膜在不同退火燒結溫度之粗糙度關係圖 51 圖4-13 PZT壓電厚膜在不同退火燒結溫度之AFM表面樣貌圖 52 圖4-14 PZT壓電厚膜表面晶粒成長示意圖 52 圖 4-15不同退火燒結溫度之介電常數ε_r對頻率關係圖 53 圖 4-16 不同退火燒結溫度之介電損耗tanδ對頻率關係圖 54 圖4-17 不同退火燒結溫度之電滯曲線圖 55 圖4-18 不同退火燒結溫度之殘餘極化量Pr對外加電場關係圖 56 圖4-19 不同退火燒結溫度之壓電係數d33關係圖 57 圖4-20 為不同滲透壓力之試片示意圖 60 圖4-21 真空滲透模型 60 圖4-22 PZT壓電厚膜在不同真空抽氣時間之XRD圖 61 圖4-23 PZT壓電厚膜在不同真空抽氣時間之SEM表面樣貌圖 64 圖4-24 PZT壓電厚膜在不同真空抽氣時間之SEM頗面圖 65 圖4-25 PZT壓電厚膜在不同真空抽氣時間之粗糙度關係圖 66 圖4-26 PZT壓電厚膜在不同真空抽氣時間之AFM表面樣貌圖 67 圖4-27為不同真空抽氣時間之介電常數εr對頻率關係圖 68 圖4-28為不同真空抽氣時間之介電損耗tanδ對頻率關係圖 69 圖4-29為不同真空抽氣時間之電滯曲線圖 70 圖4-30 不同真空抽氣時間之殘餘極化量Pr對外加電場關係圖 71 圖4-31 不同真空抽氣時間之壓電係數d33關係圖 72 圖4-32 環形加速規結構圖 75 圖4-33 ANSYS分析第一共振模態 75 圖4-34 固定不同Si膜層半徑r2比較不同質量塊寬度r1與Si膜層厚度h關係圖 76 圖4-35 固定質量塊寬度r1=1000μm比較不同Si膜層半徑r2與Si膜層厚度h關係圖 78 圖3-36 MEMS壓電加速規元件與量測系統示意圖 80 圖4-37 不同Si膜層厚度h之靈敏度與頻率分析圖 82 圖4-38所示為乾蝕刻之表面輪廓圖 84 圖 4-39弧形Si膜層頗面示意圖 85 圖 4-40有效厚度h_eff概念示意圖 85 圖4-41弧形Si膜層面積計算示意圖 86 圖4-42 MEMS壓電加速規應用於工具機主軸實際量測示意圖 88 圖4-43主軸未偏心與偏心之量測 89

    [1] H. Kopetz, “Real-Time Systems: Design Principles for Distributed Embedded Applications,” Springer Science, pp. 307-322, 2011.
    [2] S. Patrick, G. Jens Ole, and K. Lars Munch, “A piezoelectric triaxial accelerometer,” Journal of Micromechanics and Microengineering, vol. 6, no. 1, pp. 131, 1996.
    [3] A. V. Shirinov, and W. K. Schomburg, “Pressure sensor from a PVDF film,” Sensors and Actuators A: Physical, vol. 142, no. 1, pp. 48-55, 2008.
    [4] K. I. Park, S. Xu, Y. Liu, G. T. Hwang, S. J. Kang, Z. L. Wang, and K. J. Lee, “Piezoelectric BaTiO3 thin film nanogenerator on plastic substrates,” Nano Lett, vol. 10, no. 12, pp. 4939-43, 2010.
    [5] P. Jegatheesan, and N. V. Giridharan, “Enhanced electrical properties of PZT thick films prepared by sol–gel technique through step-by-step crystallization process,” Journal of Materials Science: Materials in Electronics, vol. 23, no. 5, pp. 1103-1107, 2011.
    [6] A. Lei, R. Xu, A. Thyssen, A. C. Stoot, T. L. Christiansen, K. Hansen, R. Lou-Moller, E. V. Thomsen, and K. Birkelund, "MEMS-based thick film PZT vibrational energy harvester," IEEE 24th International Conference on Micro Electro Mechanical Systems, pp. 125-128, 2011.
    [7] K. Sreenivas, M. Sayer, D. J. Baar, and M. Nishioka, “Surface acoustic wave propagation on lead zirconate titanate thin films,” Applied Physics Letters, vol. 52, no. 9, pp. 709-711, 1988.
    [8] P. H. Cazorla, O. Fuchs, M. Cochet, S. Maubert, G. Le Rhun, P. Robert, Y. Fouillet, and E. Defay, “Piezoelectric Micro-pump with PZT Thin Film for Low Consumption Microfluidic Devices,” Procedia Engineering, vol. 87, pp. 488-491, 2014.
    [9] O. Auciello, and A. I. Kingon, "A critical review of physical vapor deposition techniques for the synthesis of ferroelectric thin films," Applications of Ferroelectrics, pp. 320-331, 1992.
    [10] L. Goldstein, F. Glas, J. Y. Marzin, M. N. Charasse, and G. Le Roux, “Growth by molecular beam epitaxy and characterization of InAs/GaAs strained‐layer superlattices,” Applied Physics Letters, vol. 47, no. 10, pp. 1099-1101, 1985.
    [11] C. R. Gorla, N. W. Emanetoglu, S. Liang, W. E. Mayo, Y. Lu, M. Wraback, and H. Shen, “Structural, optical, and surface acoustic wave properties of epitaxial ZnO films grown on (011̄2) sapphire by metalorganic chemical vapor deposition,” Journal of Applied Physics, vol. 85, no. 5, pp. 2595-2602, 1999.
    [12] X. W. Sun, and H. S. Kwok, “Optical properties of epitaxially grown zinc oxide films on sapphire by pulsed laser deposition,” Journal of Applied Physics, vol. 86, no. 1, pp. 408-411, 1999.
    [13] W. Zhu, Z. Wang, C. Zhao, O. K. Tan, and H. H. Hng, “Low Temperature Processing of Nanocrystalline Lead Zirconate Titanate (PZT) Thick Films and Ceramics by a Modified Sol-Gel Route,” Japanese Journal of Applied Physics, vol. 41, no. Part 1, No. 11B, pp. 6969-6975, 2002.
    [14] F. Seitz, and D. Turnbull, “Solid State Physics,” vol. 7, 1958.
    [15] A. M. Badr, H. A. Elshaikh, and I. M. Ashraf, “Impacts of Temperature and Frequency on the Dielectric Properties for Insight into the Nature of the Charge Transports in the Tl2S Layered Single Crystals,” Journal of Modern Physics, vol. 02, no. 01, pp. 12-25, 2011.
    [16] L. L. Hench, and J. K. West, “Principles of Electronic Ceramics,” 1990.
    [17] 孫. 朱建國,李衛, “電子與光電材料,” 北京國防工業出版社, 2007.
    [18] M. L.Thompson, “On the Material Properties and Constitutive Equations of Piezoelectric Poly Vinylidene Fluoride (PVDF),” Drexel University Doctor of Philosophy, 2002.
    [19] Y. Liao, “Practical Electron Microscopy and Database,” Springer Science, 2007.
    [20] J. S. Lee, H. J. Lee, J. Y. Lee, S. H. Kang, I. W. Kim, C. W. Ahn, and G. S. Chung, “Preparation and Evaluation of Lead-Free Na0.5K0.5NbO3 Ferroelectric Thin Films,” Journal of the Korean Physical Society, vol. 52, no. 4, pp. 1109-1113, 2008.
    [21] S. Trolier-McKinstry, and P. Muralt, “Thin Film Piezoelectrics for MEMS,” Journal of Electroceramics, vol. 12, no. 1, pp. 7-17, 2004.
    [22] Q.-M. Wang, Z. Yang, F. Li, and P. Smolinski, “Analysis of thin film piezoelectric microaccelerometer using analytical and finite element modeling,” Sensors and Actuators A: Physical, vol. 113, no. 1, pp. 1-11, 2004.
    [23] H. D. Chen, K. R. Udayakumar, L. E. Cross, J. J. Bernstein, and L. C. Niles, “Dielectric, ferroelectric, and piezoelectric properties of lead zirconate titanate thick films on silicon substrates,” Journal of Applied Physics, vol. 77, no. 7, pp. 3349-3353, 1995.
    [24] C. Galassi, E. Roncari, C. Capiani, and P. Pinasco, “PZT-based suspensions for tape casting,” Journal of the European Ceramic Society, vol. 17, no. 2, pp. 367-371, 1997.
    [25] D. A. Barrow, T. E. Petroff, R. P. Tandon, and M. Sayer, “Characterization of thick lead zirconate titanate films fabricated using a new sol gel based process,” Journal of Applied Physics, vol. 81, no. 2, pp. 876-881, 1997.
    [26] B. Matthes, G. Tomandl, and G. Werner, “Characterization of PZT thin films prepared by a modified sol-gel method,” Journal of the European Ceramic Society, vol. 19, no. 6, pp. 1387-1389, 1999.
    [27] A. L. Kholkin, V. K. Yarmarkin, A. Wu, M. Avdeev, P. M. Vilarinho, and J. L. Baptista, “PZT-based piezoelectric composites via a modified sol-gel route,” Journal of the European Ceramic Society, vol. 21, no. 10, pp. 1535-1538, 2001.
    [28] Q. Q. Zhang, F. T. Djuth, Q. F. Zhou, C. H. Hu, J. H. Cha, and K. K. Shung, “High frequency broadband PZT thick film ultrasonic transducers for medical imaging applications,” Ultrasonics, vol. 44 Suppl 1, pp. e711-5, 2006.
    [29] R. A. Dorey, S. B. Stringfellow, and R. W. Whatmore, “Effect of sintering aid and repeated sol infiltrations on the dielectric and piezoelectric properties of a PZT composite thick film,” Journal of the European Ceramic Society, vol. 22, no. 16, pp. 2921-2926, 2002.
    [30] Z. Wang, W. Zhu, C. Zhao, and O. K. Tan, “Dense PZT thick films derived from sol-gel based nanocomposite process,” Materials Science and Engineering: B, vol. 99, no. 1-3, pp. 56-62, 2003.
    [31] D. Wu, Q. Zhou, K. K. Shung, S. N. Bharadwaja, D. Zhang, and H. Zheng, “Dielectric and Piezoelectric Properties of PZT Composite Thick Films with Variable Solution to Powder Ratios,” Journal of the American Ceramic Society, vol. 92, no. 6, pp. 1276-1279, 2009.
    [32] A. Sachdeva, and R. P. Tandon, “Effect of sol composition on dielectric and ferroelectric properties of PZT composite films,” Ceramics International, vol. 38, no. 2, pp. 1331-1339, 2012.
    [33] S. Dutta, A. A. Jeyaseelan, and S. Sruthi, “Low-Temperature Processing of PZT Thick Film by Seeding and High-Energy Ball Milling and Studies on Electrical Properties,” Journal of Electronic Materials, vol. 42, no. 12, pp. 3524-3528, 2013.
    [34] S. Sinha, S. Shakya, R. Mukhiya, R. Gopal, and B. D Pant, “Design and Simulation of MEMS Differential Capacitive Accelerometer, ” ISSS International Conference on Smart Materials, 2014.
    [35] A. Albarbar, S. Mekid, A. Starr, and R. Pietruszkiewicz, “Suitability of MEMS Accelerometers for Condition Monitoring: An experimental study,” Sensors, vol. 8, no. 2, pp. 784 - 789, 2008.
    [36] J. Y. Wang, T. T. Wang, and H. Guo, “A New Design of a Piezoelectric Triaxial Micro-Accelerometer,” Key Engineering Materials, vol. 645-646, pp. 841-846, 2015.
    [37] J. H. Kim, L. Wang, S. M. Zurn, L. Li, Y. S. Yoon, and D. L. Polla, “Fabrication process of pzt piezoelectric cantilever unimorphs using surface micromachining,” Integrated Ferroelectrics, vol. 15, no. 1-4, pp. 325-332, 2006.
    [38] K. Kunz, P. Enoksson, and G. Stemme, “Highly sensitive triaxial silicon accelerometer with integrated PZT thin film detectors,” Sensors and Actuators A: Physical, vol. 92, no. 1, pp. 156-160, 2001.
    [39] Q. Zou, W. Tan, E. S. Kim, and G. E. Loeb, “Single- and Triaxis Piezoelectric-Bimorph Accelerometers,” Journal of Microelectromechanical Systems, vol. 17, no. 1, pp. 45-57, 2008.
    [40] C. C. Hindrichsen, N. S. Almind, S. H. Brodersen, R. Lou-Møller, K. Hansen, and E. V. Thomsen, “Triaxial MEMS accelerometer with screen printed PZT thick film,” Journal of Electroceramics, vol. 25, no. 2-4, pp. 108-115, 2010.
    [41] R. h. Han, J. y. Wang, M. h. Xu, and H. Guo, "Design of a tri-axial micro piezoelectric accelerometer," Symposium on Piezoelectricity, Acoustic waves, and Device Applications, pp. 66-70, 2016.
    [42] H. Zhou, R. h. Han, M. h. Xu, and H. Guo, "Study of a piezoelectric accelerometer based on d33 mode," Symposium on Piezoelectricity, Acoustic waves, and Device Applications, pp. 61-65, 2016.
    [43] W. Li-Peng, R. A. Wolf, W. Yu, K. K. Deng, L. Zou, R. J. Davis, and S. Trolier-McKinstry, “Design, fabrication, and measurement of high-sensitivity piezoelectric microelectromechanical systems accelerometers,” Journal of Microelectromechanical Systems, vol. 12, no. 4, pp. 433-439, 2003.
    [44] H. G. Yu, L. Zou, K. Deng, R. Wolf, S. Tadigadapa, and S. Trolier-McKinstry, “Lead zirconate titanate MEMS accelerometer using interdigitated electrodes,” Sensors and Actuators A: Physical, vol. 107, no. 1, pp. 26-35, 2003.
    [45] C. C. Hindrichsen, J. Larsen, E. V. Thomsen, K. Hansen, and R. Lou-Moller, "Circular piezoelectric accelerometer for high band width application," IEEE SENSORS Conference, pp. 475-478, 2009.
    [46] G. Yugandhar, G. Venkateswara Rao, and K. Srinivasa Rao, “Modeling and Simulation of Piezoelectric MEMS Sensor,” Materials Today: Proceedings, vol. 2, no. 4-5, pp. 1595-1602, 2015.
    [47] B. Yaghootkar, S. Azimi, and B. Bahreyni, "Wideband piezoelectric mems vibration sensor," IEEE SENSORS Conference, pp. 1-3, 2016.
    [48] D. L. DeVoe, and A. P. Pisano, “Surface micromachined piezoelectric accelerometers (PiXLs),” Journal of Microelectromechanical Systems, vol. 10, no. 2, pp. 180-186, 2001.
    [49] S. Shanmugavel, K. Yao, T. D. Luong, S. R. Oh, Y. Chen, C. Y. Tan, A. Gaunekar, P. H. Y. Ng, and M. H. L. Li, “Miniaturized acceleration sensors with in- plane polarized piezoelectric thin films produced by micromachining,” IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, vol. 58, no. 11, pp. 2289-2296, 2011.
    [50] N. N. Hewa-Kasakarage, D. Kim, M. L. Kuntzman, and N. A. Hall, “Micromachined Piezoelectric Accelerometers via Epitaxial Silicon Cantilevers and Bulk Silicon Proof Masses,” Journal of Microelectromechanical Systems, vol. 22, no. 6, pp. 1438-1446, 2013.
    [51] C. J. Brinker, and G. W. Scherer, “Sol-Gel Science: The Physics and Chemistry of Sol-Gel Processing,” Harcourt Brace Jovanovich, 2013.
    [52] J. Matyas, R. Olejnik, P. Slobodian, and Z. Spitalsky, “Flexible microstrip antenna based on graphene/styrene-isoprene-styrene copolymer composite thin layer deposited on PET substrate for VOC detection,” Tomas Bata University Centre of Polymer Systems, 2016.
    [53] M. Teodorescu, “Research on Biomimetics Applicability in Textile Products - Thesis summary,” Gheorghe Asachi Technical University Faculty of Textiles & Leather Engineering and Industrial Management, 2012.
    [54] “http://www.icdd.com/,” The International Centre for Diffraction Data.
    [55] E. C. Lima, and E. B. Araújo, “Phase Transformations in PZT Thin Films Prepared by Polymeric Chemical Method,” Advances in Materials Physics and Chemistry, vol. 02, no. 03, pp. 178-184, 2012.
    [56] 黃彥翔, “新式真空滲透法備製高品質PZT壓電厚膜與特性分析,” 國立成功大學機械工程學系碩士論文, 2009.
    [57] M.-H. Bae, H.-W. Park, K.-J. Lim, J.-S. Lee, W.-J. Choi, and K. No, “The Effect of Thermal Annealings of PZT Thin Films Prepared by Sol-Gel,” Ferroelectrics, vol. 271, no. 1, pp. 193-198, 2002.
    [58] C. Zhao, Z. Wang, W. Zhu, X. I. Yao, and W. Liu, “PZT Thick Films Fabrication Using a Sol-Gel Based 0-3 Composite Processing,” International Journal of Modern Physics B, vol. 16, no. 01n02, pp. 242-248, 2002.
    [59] W. Zhihong, Z. Weiguang, Z. Hong, M. Jianmin, C. Chen, Z. Changlei, and T. Ooi Kiang, “Fabrication and characterization of piezoelectric micromachined ultrasonic transducers with thick composite PZT films,” IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, vol. 52, no. 12, pp. 2289-2297, 2005.
    [60] W. Chen, Z. H. Wang, C. Ke, W. Zhu, and O. K. Tan, “Preparation and characterization of Pb(Zr0.53Ti0.47)O3/CoFe2O4 composite thick films by hybrid sol–gel processing,” Materials Science and Engineering: B, vol. 162, no. 1, pp. 47-52, 2009.
    [61] J. Pérez, N. P. Vyshatko, P. M. Vilarinho, and A. L. Kholkin, “Electrical properties of lead zirconate titanate thick films prepared by hybrid sol–gel method with multiple infiltration steps,” Materials Chemistry and Physics, vol. 101, no. 2-3, pp. 280-284, 2007.
    [62] J. M. Marshall, S. Corkovic, Q. Zhang, R. W. Whatmore, C. Chima-Okereke, W. L. Roberts, A. J. Bushby, and M. J. Reece, “The Electromechanical Properties of Highly [100] Oriented [Pb(Zr0.52Ti0.48)O3, PZT] Thin Films,” Integrated Ferroelectrics, vol. 80, no. 1, pp. 77-85, 2011.
    [63] Y. Ohya, Y. Yahata, and T. Ban, “Dielectric and piezoelectric properties of dense and porous PZT films prepared by sol-gel method,” Journal of Sol-Gel Science and Technology, vol. 42, no. 3, pp. 397-405, 2007.
    [64] J. Pérez de la Cruz, E. Joanni, P. M. Vilarinho, and A. L. Kholkin, “Thickness effect on the dielectric, ferroelectric, and piezoelectric properties of ferroelectric lead zirconate titanate thin films,” Journal of Applied Physics, vol. 108, no. 11, pp. 114106, 2010.
    [65] N. Chidambaram, A. Mazzalai, and P. Muralt, “Measurement of effective piezoelectric coefficients of PZT thin films for energy harvesting application with interdigitated electrodes,” IEEE Trans Ultrason Ferroelectr Freq Control, vol. 59, no. 8, pp. 1624-31, 2012.
    [66] B. Ma, S. Liu, S. Tong, M. Narayanan, R. E. Koritala, Z. Hu, and U. Balachandran, “Residual stress of (Pb0.92La0.08)(Zr0.52Ti0.48)O3films grown by a sol–gel process,” Smart Materials and Structures, vol. 22, no. 5, pp. 055019, 2013.
    [67] H. Sun, Y. Zhang, X. Liu, S. Guo, Y. Liu, and W. Chen, “The effect of Mn/Nb doping on dielectric and ferroelectric properties of PZT thin films prepared by sol–gel process,” Journal of Sol-Gel Science and Technology, vol. 74, no. 2, pp. 378-386, 2015.

    下載圖示 校內:2023-09-01公開
    校外:2023-09-01公開
    QR CODE