簡易檢索 / 詳目顯示

研究生: 黃敏隆
Huang, Min-Lung
論文名稱: 具再生箝制之高功因充電器研製
Design and Implementation of a High Power Factor Battery Charger with Regenerative Clamping
指導教授: 陳建富
Chen, Jiann-Fuh
梁從主
Liang, Tsorng-Juu
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2003
畢業學年度: 91
語文別: 中文
論文頁數: 79
中文關鍵詞: 新型高功因充電策略再生箝制單級雙開關交/直流轉換器
外文關鍵詞: Novel High Power Factor Strategy, Single-Stage Two-Switch AC/DC Power Converter, Regenerative Clamping
相關次數: 點閱:115下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文提出單級雙開關高功因充電電路,運用定頻控制之高頻PWM調變方式,並利用不需偵測輸入電流之功因修正技術,確保電源端達到高功因之標準並減少輸入電流諧波。應用雙開關架構及結合再生箝制之優點,一小容量再生電容搭配雙箝制二極體組合成能量回收之再生路徑,轉存漏感能量於再生電容及箝制開關電壓;可適用較高輸入電壓與選用較低導通損之功率元件,減少能量浪費及提昇系統效能。本文進一步提出一種新型高功因脈衝充電策略,運用二倍線頻120Hz電能達到大電流充電之效果。因此,本文研製電路具有簡單控制架構及體積小、重量輕等優越性。最後結合監測軟體,即時記錄電池充放電數據以探討電池之充放電特性;並以實測結果及電腦模擬驗證電路設計之可行性,除了具有功因修正功能外並能符合IEC之規範。

    A single stage pulse charging topology with high power factor without sensing input current is proposed. The system structure is implemented with a two-switch flyback converter topology integrated regenerative clamping. Since the recycle energy stored in leakage inductance is converted to regenerative capacitor, conversion efficiency is thus increased. Further, the voltage stresses and conduction loss on the switches are greatly reduced, as compared with conventional flyback converter. The design and implementation of charging system is based on a single stage ac/dc flyback circuit topology to reduce the required hardware and obtain improved efficiency and reliability. Therefore, this single stage pulse charging topology makes it possible to achieve some better electrical performances, smaller physical size, lighter weight, and high efficiency in power conversion. Besides, a VB-based real-time monitor system is adopted to measure the battery charging data for analysis of pulse charge control characteristics. Computer simulation and experimental results are carried out to verify that the pulse charger circuit can achieve low total harmonic distortion (THD) and near unity power factor to meet IEC standard.

    摘要 Ⅰ 英文摘要 Ⅱ 誌謝 IV 目錄 V 圖目錄 VII 表目錄 X 符號表 XⅠ 第一章 緒論 1 1.1 研究動機與目的 1 1.2 研究背景與現況 2 1.3 內容大綱 3 第二章 二次電池及單級交/直流轉換器介紹 5 2.1 二次電池簡介 5 2.2 鉛酸蓄電池之電化學反應及密閉原理 6 2.3 鉛酸蓄電池特性 7 2.4 功因修正電路簡介 10 2.5 功因修正技術發展現狀 11 2.5.1 被動式功因修正電路 12 2.5.2 主動式功因修正電路 14 2.6 單級整合型交/直流轉換器 15 2.7 箝制電路應用於返馳式轉換器 19 2.8 再生箝制應用於返馳型轉換器 21 第三章 高功因脈衝電路動作原理及狀態分析 23 3.1 充電器之架構比較 23 3.2 高功因脈衝充電器之動作原理 25 3.3 具再生箝制高功因充電器之狀態分析 26 I. 狀態一(開關導通狀態) 28 II. 狀態二(開關截止瞬間) 29 III. 狀態三(回收漏感能量) 31 VI. 狀態四(二次側導通) 32 V. 狀態五(箝制開關電壓) 33 VI. 狀態六(再生利用能量) 35 3.4 電路規劃設計 37 3.4.1 電路操作模式說明 37 3.4.2 電路參數設計 39 第四章 系統軟硬體規劃及設計製作 41 4.1 整體系統規劃 41 4.2 軟體規劃 41 4.2.1新型高功因脈衝充電策略 41 4.2.2不需偵測電流功因修正控制 46 4.2.3實際控制器責任週期規劃 48 4.2.4脈衝充電控制器設計流程 50 4.3 硬體規劃 51 4.3.1電路元件設計 51 4.3.2硬體電路製作 54 第五章 電腦模擬及實測結果之討論 58 5.1 電路特性之模擬與實測波形 59 5.1.1電路重要波形 59 5.1.2 雙開關切換及導通時功率損耗 63 5.1.3 輸入電源電壓與電流 65 5.1.4電路特性量測 67 5.1.5 IEC標準之規範 69 5.2 高功因脈衝充電試驗 70 第六章 結論與未來研究方向 74 6.1 結論 74 6.2 未來研究發展 75 參考文獻 76

    [1] J. P. Nelson and W. D. Bolin, “Basic and advances in battery systems,” IEEE
    Trans. on Industry Application, Vol. 31, March/April 1995, pp. 419-428.
    [2] J. H. Aylor, A. Thieme, and B. W. Johnson, “A battery state-of-charge
    indicator for electric wheelchairs,” IEEE Trans. on Industrial Electronics,
    Vol. 39, 1992, pp. 398-409.
    [3] M. Gonzalez, F. J. Ferrero, J. C. Anton, and M. A. Perez, “Considerations to
    improve the practical design of universal and full-effective NiCd/NiMH
    battery fast-chargers,” APEC '99. 14th Annual, Vol. 1, 1999, pp. 167-173.
    [4] E. M. Valeriote, T. G. Chang, and D. M. Jochim, “Fast charging of Lead-Acid
    batteries,” Proceeding of the 9th Annual Battery Conference on Application
    and Advances, 1994, pp. 33-38.
    [5] Z. M. Salameh, M. A. Casacca, and W. A. Lynch, “A mathematical model for
    lead-acid batteries,” IEEE Trans. on Energy Conversion, Vol. 7, No. 1, 1992,
    pp. 93-97.
    [6] Y. H. Kim and H. D. Ha, “Design of interface circuits with electrical
    battery models,” IEEE Trans. on Industrial Electronics, Vol. 44, No. 1,
    1997, pp. 81-86.
    [7] M. Gonzalez, M. A. Perez, J. C. Campo, and F. J. Ferrero, “Accurate
    detection algorithm of battery full-capacity under fast-charge,” IEEE IMTC
    1998, Vol. 2, 1998, pp. 755-759.
    [8] Electromagnetic Compatibility (EMC)—Part 3: Limits section II: Limits for
    harmonic current emissions (Equipment input current 16A per phase), IEC
    61000-3-2, 1st ed., 1995.
    [9] K. Wang, F. C. Lee, and W. Dong, ”A new soft-switched quasi-single-stage
    (QSS) bi-directional inverter/charger,” IEEE IAS 1999, Vol. 3, 1999, pp.
    2031-2038.
    [10] F. N. K. Poon and M. H. Pong, “A constant power battery charger circuit
    with inherent soft switching and PFC,” IEEE APEC 2000, Vol. 1, 2000, pp.
    480-484.
    [11] T. J. Liang, T. Wen, K. C. Tseng, and J. F. Chen, “Implementation of a
    regenerative pulse charger using hybrid buck-boost converter,” IEEE PEDS
    2001, Oct. 2001, pp. 437-442.
    [12] C. S. Moo, H. L. Cheng, and S. J. Guo, “Designing passive LC filters with
    contour maps for diode bridge rectifiers,” IEEE PEDS’97, 1997, pp.
    834-838.
    [13] A. R. Prasad, P. D. Ziogas, and S. Manias, “A novel passive waveshaping
    method for single-phase diode rectifiers,” IEEE Transactions on Industrial
    Electronics, Vol. IE-37 no. 6, Dec 1990, pp. 521-530.
    [14] R. Redl, L. Balogh, and N. O. Sokal, “A new family of single-stage isolated
    power-factor correctors with fast regulation of the output voltage,” IEEE
    PESC'94, 1994, pp. 1137-1144.
    [15] R. Erickson, M. Madigan and S. Singer, “Design of a simple
    high-power-factor rectifier based on the flyback converter,” IEEE APEC’90,
    1990, pp. 792-801.
    [16] W. Tang, Y. Jiang, G. C. Hua, F. C. Lee and I. Cohen, “Power factor
    correction with flyback converter employing charge control,” IEEE APEC'93,
    1993, pp. 293-298.
    [17] K. H. Liu and Y. L. Lin, “Current waveform distortion in power factor
    correction circuit employing discontinuous-mode boost converters,” IEEE
    PESC’89, 1989, pp. 825-829.
    [18] M. H. L. Chow, Y. S. Lee, and C. K. Tse, “Single-stage single-switch
    isolated PFC regulator with unity power factor, fast transient response and
    low-voltage stress,” IEEE Trans. on Power Electronics, 2000, pp.156-163.
    [19] T. F. Wu and Y. K. Chen, “Analysis and design of an isolated single-stage
    converter achieving power-factor correction and fast regulation,” IEEE
    Trans. on Industrial Electronics, 1999, pp. 759-767.
    [20] C. Qiao and K. M. Smedley, “A topology survey of single-stage power factor
    corrector with a boost type input-current-shaper,” IEEE Trans. on Power
    Electronics, Vol. 16 No. 3, 2001, pp. 360-368.
    [21] H. L. Chow, K. W. Siu, C. K. T se, and Y. S. Lee, ” A novel method for
    elimination of line-current harmonics in single-stage PFC switching
    regulators,” IEEE Trans. on Power Electronics, Vol. 13, No.1, 1998, pp.
    75-83.
    [22] C. Aguilar, F. Canales, J. Arau, J. ebastian, and J. Uceda, “An improved
    battery charger/discharger topology with power factor correction,” IEEE
    IECON 1995, Vol. 1, 1995, pp. 590-595.
    [23] S. J. Finney, B. W. Williams, and T. C. Green, “RCD snubber revisited,”
    IEEE Trans. on Industry Application, Vol. 32 , Jan.-Feb. 1996, pp. 155-160.
    [24] M. Clark, “Transient voltage suppressor types and application,” IEEE
    Trans. on Power Electronics, Vol. 5, Nov. 1990, pp. 20-26.
    [25] T. F. Wu, S. A. Liang, and C. H. Lee, “A family of isolated single-stage
    ZVS-PWM active-clamping converters,” IEEE PESC'99, Vol. 2, 1999, pp.
    665-670.
    [26] R. Watson, G. C. Hua, and F. C. Lee, “Characterization of an active clamp
    flyback topology for power factor correction applications,” IEEE
    Transactions on Power Electronics, Vol. 11, no.1, 1996, pp. 191-198.
    [27] R. Watson, F. C. Lee, and G. C. Hua, “Utilization of an active-clamp
    circuit to achieve soft switching in flyback converters,” IEEE Transactions
    on Power Electronics, Vol. 11, no. 1, 1996, pp. 162-169.
    [28] L. Petersen, “Advantages of using a two-switch forward in single-stage
    power factor corrected power supplies,” Telecommunications Energy
    Conference, 2000, pp. 325-331.
    [29] Y. S. Lee, K. W. Siu, and B. T. Lin, “Novel single-stage isolated
    power-factor-corrected power supplies with regenerative clamping,” IEEE
    Trans. on Industry Application, Vol. 34, No.6, 1998, pp. 1299-1308.
    [30] K. W. Siu and Y. S. Lee, “A novel high-efficiency flyback p
    power-factor-correction with regenerative clamping and soft switching,”
    IEEE Trans. on Circuits and Systems, Vol. 47, No.3, 2000, pp. 350-356.
    [31] S. Miaosen and Q. Zhaoming, “A novel high efficiency single stage PFC
    converter with reduced voltage stress,” IEEE Applied Power Electronics
    Conference and Exposition, Vol. 1, 2001, pp. 363-367.
    [32] A. I. Pressman, “Switching Power Supply Design,” McGraw-Hill Inc., 1999.
    [33] R. F. Coughlin and F. F. Driscoll, “Operational amplifiers and linear
    integrated circuits,” 1987.
    [34] N. Mohan, T. M. Undeland, and W. P. Robbins, “Power Electronics; Converter,
    Applications and Design,” New York ; John Wiley, 1995.
    [35] M. H. Rashid, “SPICE for Power Electronics and Electrical Power,”
    Prentic-Hill Inc. A Simon & Schuster Company Englewood Cliffs, New Jersey,
    1993.
    [36] S. M. Sandler, “SMPS Simulation with SPICE3,” Mc Grew-Hill Companise,
    1997.
    [37] TMS320C240 User’s Guide, Texas Instruments, 1997.

    下載圖示 校內:2009-07-04公開
    校外:2009-07-04公開
    QR CODE