簡易檢索 / 詳目顯示

研究生: 徐㻑瑈
Hsu, Chi-Jou
論文名稱: 甲醛暴露與健康風險評估及其於呼吸防護計畫之應用-以樹脂製造業之多聚甲醛倉庫為例
Formaldehyde Exposure and Health Risk Assessment and Its Application in the Respiratory Protective Program - By Taking the Paraformaldehyde Warehouse of a Resin Manufacturing Industry as an Example
指導教授: 蔡朋枝
Tsai, Perng-Jy
學位類別: 碩士
Master
系所名稱: 醫學院 - 環境醫學研究所
Department of Environmental and Occupational Health
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 56
中文關鍵詞: 暴露模式推估完全混合盒模式污染物產生率污染物非通風移除率多聚甲醛甲醛暴露與健康風險評估呼吸防護具
外文關鍵詞: Generation rate, Non-ventilation related removal rate, Formaldehyde, Cancer risk, Respiratory protective equipment
相關次數: 點閱:100下載:33
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 為掌握職場作業勞工對具有危害健康之化學品暴露,建立量化暴露模式推估以取代昂貴耗時的環測採樣分析,已愈來愈被重視與使用。為推廣暴露模式之應用可行性,本研究以樹脂製造業多聚甲醛倉庫之甲醛暴露為對象,利用理論建構與實廠監測來印證與修正暴露模式,進而評估勞工之暴露狀況與健康風險,以及其常用之相關呼吸防護措施。在運用暴露模式推估時,時常會缺乏污染物產生率(Generation rate, G)以及污染物非通風移除率(non-ventilation related removal rate, Ksink)二項重要參數,增加了推估不確定性與誤差。因此本研究使用First order Runge-Kutta方法,結合線性回歸方程式,推導出G與Ksink計算式,並透過暴露腔試驗取得甲醛之G與Ksink,結合現場環境參數(倉庫體積與多聚甲醛貯存量)後,利用完全混合盒模式,建構倉庫之暴露推估模式,以合理推估倉庫現場甲醛濃度,再使用實廠測值對模式進行驗證與修正,以合理評估勞工長短期暴露濃度與分級、終身健康風險,及提出呼吸防護具選用建議。
    在取得倉庫樣本並模擬現場實際包裝等條件下,由暴露腔試驗得到甲醛的G (mean ± sd)為1.46 x 10-3 ± 6.53 x 10-5 mg/min/kg;Ksink (mean ± sd)為4.50 x 10-3 ± 2.77 x 10-4 m3/min,利用模式推估得現場倉庫之甲醛暴露濃度(mean ± sd)為0.37 ± 0.15 mg/m3,經與實廠測值驗證並修正模式後,得以推估倉庫作業勞工之長短期甲醛平均暴露濃度,8小時(TWA)暴露濃度為1.86 x 10-2 ppm,15分鐘(STEL)暴露濃度為2.23 x 10-1 ppm,均在法規所訂定之容許暴露限值內。惟為考慮不確定性,以第95百分位值進行暴露分級(第0 ~ 4級),在以台灣及美國OSHA容許濃度標準(台灣STEL與TWA分別為2及1 ppm;美國OSHA STEL與TWA分別為2及0.75 ppm)下,其STEL與TWA暴露分級均落在2級( < 0.5 PEL )之下,僅需持續監測與維持現有控制措施即可;而在更為嚴格的美國工業衛生師協會(ACGIH)與美國安全衛生研究所(NIOSH)之容許濃度標準(ACGIH STEL與TWA分別為0.3及0.1 ppm;NIOSH STEL與TWA分別為0.1及0.016 ppm)下,暴露分級可能會落在第4級( ≧ PEL),需立即改善與採行必要控制措施,並於短期內再評估,使勞工暴露低於容許濃度標準。由於倉庫作業勞工暴露時間與次數短暫,在終身致癌健康風險評估上,其健康風險分級為第一級( <10-6)。
    基於現場甲醛暴露條件的變動性與暴露分級第4級之可能性,應用呼吸防護具防護計畫相關規定與指引,評估現場所選用的有機氣體過濾式呼吸防護具,發現當在模式推估的倉庫甲醛平均暴露濃度之情況下,廠商現有的過濾式呼吸防護具之有機濾毒罐其可適當防護甲醛氣體,而為保護作業勞工與方便行政管理,在適當保管維護條件下,建議每2個月更換一個濾毒罐為宜。

    To conduct exposure and health risk assessment and evaluate the selection of respiratory protective equipment of workers in paraformaldehyde warehouse, a formaldehyde exposure model is established. This study uses Runge-Kutta and statistic methods to establish the theoretical G and Ksink on the WMB model. Then, the generation rate (G) and non-ventilation related removal rate (Ksink) of formaldehyde were obtained through the chamber experiment, and the field environmental parameters, are used to establish the warehouse exposure model. Field measurements are used to validate and modify the WMB model for reasonably assessing the exposure. The model and Monte Carlo simulation tool are used to estimated field and long-term formaldehyde concentration. After applying the exposure estimation, the worker exposure banding is categorized as level 2 (< 0.5PEL) under the PEL standard of Taiwan and the OSHA. While in the more stringent ACGIH and NIOSH PELs, the exposure banding may fall into level 4 ( ≧ 1 PEL ). The long-term cancer health risk is categorized as level 1 (<10-6) of warehouse workers. As to respirator selection, the cartridge has batter to be replaced every 2 months for protecting the worker from formaldehyde properly.

    摘要 I Extend Abstract III 誌謝 VII 目錄 VIII 表目錄 XI 圖目錄 XII 第一章 前言 1 1-1 研究背景 1 1-2 研究方向與目的 2 第二章 文獻回顧 3 2-1 甲醛之物化特性與健康危害 3 2-2 甲醛暴露評估 4 2-2-1 甲醛作業環境監測之空氣採樣方法 4 2-2-2 揮發性有機化合物(含甲醛)之暴露模式推估技術 5 2-2-2.1 完全混合盒模式 (Well-Mixed Box Model, WMB) 7 2-2-2.1 近場/遠場模式 (Near Field/Far Field Model, NF/FF) 9 2-2-3 蒙地卡羅模擬方法 12 2-3 暴露與健康風險評估之技術 12 2-3-1 暴露風險評估 12 2-3-2 健康風險評估 14 2-4 呼吸防護評估 16 2-4-1 呼吸防護具之需要性 16 2-4-2 呼吸防護具之濾毒罐選用基準與影響因素 17 第三章 研究方法與設備 19 3-1 研究架構 19 3-2 多聚甲醛倉庫之甲醛實廠採樣 21 3-2-1 採樣廠域與環境參數 21 3-2-2 甲醛採樣方法與直讀式儀器 21 3-3 暴露腔試驗之甲醛暴露模擬 23 3-3-1 暴露腔模擬之試驗設計 23 3-3-2 暴露腔之多聚甲醛包裝試驗 24 3-4 污染物產生率(G)與污染物非通風移除率(Ksink)之計算公式建構 25 3-5 甲醛暴露之模式推估 30 3-5-1 甲醛暴露模式建立 30 3-5-2 自然通風量之計算 31 3-5-3 蒙地卡羅模擬分析方法運用 33 3-6 甲醛暴露與健康風險評估 34 3-6-1 推估勞工長期暴露濃度 34 3-6-2 甲醛之暴露分級方法 35 3-6-3 甲醛之致癌風險計算 36 3-7 呼吸防護具選用與評估 37 3-8 統計分析 37 第四章 結果與討論 38 4-1 甲醛暴露推估模式建立 38 4-1-1 污染物產生率(G)與污染物非通風移除率(Ksink)之試驗與計算結果 38 4-1-2 推估多聚甲醛倉庫之甲醛暴露濃度 41 4-2 甲醛暴露模式之驗證與修正 42 4-2-1 多聚甲醛倉庫之實廠測定結果 42 4-2-2 甲醛暴露模式之驗證與修正 43 4-3 暴露與健康風險評估 44 4-3-1 勞工長期甲醛暴露濃度估計 44 4-3-2 暴露風險評估 45 4-3-3 健康風險評估 46 4-4 呼吸防護具之選用 47 第五章 研究限制 49 第六章 結論與建議 50 參考文獻 51

    3M. 2012a. Reuse of organic vapor chemical cartridges
    3M. 2012b. 3m cartridge select and service life software. Available: https://sls.3m.com/.
    Armstrong TW. 2015. Making dec isions w ith uncertain data - practical examples of monte carlo simulations The SYNERGIST 2015 Jan.
    Arnold SF, Shao Y, Ramachandran G. 2017. Evaluating well-mixed room and near-field–far-field model performance under highly controlled conditions. Journal of Occupational and Environmental Hygiene 14:427-437.
    Blair A, Saracci R, Stewart PA, Hayes RB, Shy C. 1990. Epidemiologic evidence on the relationship between formaldehyde exposure and cancer. Scandinavian journal of work, environment & health:381-393.
    Bollinger NJ. 2004. Niosh respirator selection logic.
    Bullock WH, Ignacio JS. 2006. A strategy for assessing and managing occupational exposures:AIHA.
    Berton F, Novi CD. 2012. Occupational hazards of hospital personnel: Assessment of a safe alternative to formaldehyde. Journal of Occupational Health 54:74-78.
    Cothran T. 2000. Service life software for organic vapor cartridges. Occupational Health & Safety 69:84-84.
    Chu C-R, Chiang B-F. 2014. Wind-driven cross ventilation in long buildings. Building and environment 80:150-158.
    Chu C-R, Chiu Y-H, Tsai Y-T, Wu S-L. 2015. Wind-driven natural ventilation for buildings with two openings on the same external wall. Energy and Buildings 108:365-372.
    Chu C-R, Lan T-W. 2019. Effectiveness of ridge vent to wind-driven natural ventilation in monoslope multi-span greenhouses. Biosystems Engineering 186:279-292.
    Costa S, Costa C, Madureira J, Valdiglesias V, Teixeira-Gomes A, Guedes De Pinho P, et al. 2019. Occupational exposure to formaldehyde and early biomarkers of cancer risk, immunotoxicity and susceptibility. Environmental Research 179:108740.
    De Groot AC, Flyvholm M-A, Lensen G, Menné T, Coenraads P-J. 2009. Formaldehyde-releasers: Relationship to formaldehyde contact allergy. Contact allergy to formaldehyde and inventory of formaldehyde-releasers. Contact Dermatitis 61:63-85.
    Dugheri S, Bonari A, Pompilio I, Colpo M, Mucci N, Arcangeli G. 2018. An integrated air monitoring approach for assessment of formaldehyde in the workplace. Safety and health at work 9:479-485.
    Dugheri S, Massi D, Mucci N, Marrubini G, Cappelli G, Speltini A, et al. 2021. Exposure to airborne formaldehyde: Sampling and analytical methods—a review. Trends in Environmental Analytical Chemistry 29:e00116.
    Etheridge D, Sandberg M. 1996. Building ventilation: Theory and measurement john wiley. Chichester, England.
    Evola G, Popov V. 2006. Computational analysis of wind driven natural ventilation in buildings. Energy and buildings 38:491-501.
    Green DW, Southard MZ. 2019. Perry's chemical engineers' handbook:McGraw-Hill Education.
    Hori H, Arashidani K. 1997. Basic characteristics of a formaldehyde gas generator using solid paraformaldehyde. Journal of UOEH 19:123-131.
    Hauptmann M, Lubin JH, Stewart PA, Hayes RB, Blair A. 2004. Mortality from solid cancers among workers in formaldehyde industries. American Journal of Epidemiology 159:1117-1130.
    Hirst DVL, Gressel MG, Flanders WD. 2011. Short-term monitoring of formaldehyde: Comparison of two direct-reading instruments to a laboratory-based method. Journal of Occupational and Environmental Hygiene 8:357-363.
    IRIS. 2022. Toxicological review of formaldehyde-inhalation (external review draft). US Environmental Protection Agency, Washington, DC, EPA/635/R-22/039.
    Jayjock MA. 1997. Uncertainty analysis in the estimation of exposure. American Industrial Hygiene Association Journal 58:380-382.
    Jahn SD, Bullock WH, Ignacio JS. 2015. A strategy for assessing and managing occupational exposures:AIHA Fairfax, VA.
    Jalali M, Moghadam SR, Baziar M, Hesam G, Moradpour Z, Zakeri HR. 2021. Occupational exposure to formaldehyde, lifetime cancer probability, and hazard quotient in pathology lab employees in iran: A quantitative risk assessment. Environmental Science and Pollution Research 28:1878-1888.
    Karava P, Stathopoulos T, Athienitis AK. 2007. Wind-induced natural ventilation analysis. Solar Energy 81:20-30.
    Kroese DP, Brereton T, Taimre T, Botev ZI. 2014. Why the monte carlo method is so important today. Wiley Interdisciplinary Reviews: Computational Statistics 6:386-392.
    Liteplo RG, Beauchamp R, Meek B, Chénier R. 2002. Concise international chemical assessment document 40: Formaldehyde. IPCS Concise International Chemical Assessment Documents.
    Lai L-J, Hsu W-H, Wu AM, Wu JH. 2013. Ocular injury by transient formaldehyde exposure in a rabbit eye model. PLoS ONE 8:e66649.
    Lee EG, Magrm R, Kusti M, Kashon ML, Guffey S, Costas MM, et al. 2017. Comparison between active (pumped) and passive (diffusive) sampling methods for formaldehyde in pathology and histology laboratories. Journal of Occupational and Environmental Hygiene 14:31-39.
    Mucci N, Dugheri S, Rapisarda V, Campagna M, Garzaro G, Farioli A, et al. 2019. Occupational exposure to airborne formaldehyde in hospital: Setting an automatic sampling system, comparing different monitoring methods and applying them to assess exposure. La Medicina del lavoro 110:446.
    NRC. 1983. Risk assessment in the federal government: Managing the process. National Research Council, Washington DC 11.
    Nicas M, Spear RC. 1992. Application of mathematical modeling for ethylene oxide exposure assessment. Applied Occupational and Environmental Hygiene 7:744-748.
    NRC. 1994. Science and judgment in risk assessment. Washington, DC:The National Academies Press.
    Nicas M, Jayjock M. 2002. Uncertainty in exposure estimates made by modeling versus monitoring. AIHA Journal 63:275-283.
    Nicas M, Plisko MJ, Spencer JW. 2006. Estimating benzene exposure at a solvent parts washer. Journal of Occupational and Environmental Hygiene 3:284-291.
    Nicas M, Neuhaus J. 2008. Predicting benzene vapor concentrations with a near field/far field model. Journal of Occupational and Environmental Hygiene 5:599-608.
    Na C-J, Yoo M-J, Tsang DCW, Kim HW, Kim K-H. 2019. High-performance materials for effective sorptive removal of formaldehyde in air. Journal of Hazardous Materials 366:452-465.
    OSHA U. 2022. Using a math model table to determine a cartridge's service life. Available: https://www.osha.gov/etools/respiratory-protection/change-schedules/math-model.
    Paananen H, Pakkanen TT. 2019. Kraft lignin reaction with paraformaldehyde. Holzforschung 74:663-672.
    Reinke PA, Jayjock M, M N. 2009. Well mixed room model with changing conditions. mathematical models for estimating occupational exposure to chemicals AIHA Press, Fairfax, VA: American Industrial Hygiene Association.
    Spencer JW, Plisko MJ. 2007. A comparison study using a mathematical model and actual exposure monitoring for estimating solvent exposures during the disassembly of metal parts. Journal of Occupational and Environmental Hygiene 4:253-259.
    Songur A, Ozen OA, Sarsilmaz M. 2010. The toxic effects of formaldehyde on the nervous system.Springer New York, 105-118.
    Ten Berge WF. 2000. Mathematical models for estimating occupational exposure to chemicals:AIHA.
    US EPA. 2009. Risk assessment guidance for superfund volume i: Human health evaluation manual (part f, supplemental guidance for inhalation risk assessment).
    Wood GO. 1994. Estimating service lives of organic vapor cartridges. American Industrial Hygiene Association Journal,55(1):11-15.
    WHO G. 2010. Who human health risk assessment toolkit: Chemical hazards.
    Wood GO, Snyder JL. 2011. Estimating reusability of organic air-purifying respirator cartridges. Journal of Occupational and Environmental Hygiene 8:609-617.
    Wang F, Wang J, Han M, Jia C, Zhou Y. 2019. Heavy metal characteristics and health risk assessment of pm2. 5 in students’ dormitories in a university in nanjing, china. Building and Environment 160:106206.
    Yahyaei E, Majlesi B, Naimi Joubani M, Pourbakhshi Y, Ghiyasi S, Jamshidi Rastani M, et al. 2020. Occupational exposure and risk assessment of formaldehyde in the pathology departments of hospitals. Asian Pacific Journal of Cancer Prevention 21:1303-1309.
    Zheng H, Kong S, Yan Q, Wu F, Cheng Y, Zheng S, et al. 2019. The impacts of pollution control measures on pm2. 5 reduction: Insights of chemical composition, source variation and health risk. Atmospheric Environment 197:103-117.
    內政部建築研究所. 2014. 建築物耐風設計規範及解說.
    內政部建築研究所. 2020. 建築物自然通風量計算評估手冊.
    伍艷輝, 白素松, 谭露璐, 臧红霞. 2008. 多聚甲醛的解聚實驗研究. 實驗室研究與探索 27:69-71.
    朱佳仁. 2008. 室外風場對風壓通風影響之實驗研究:中央大學.
    朱佳仁, 邱英浩, 陳彥志, 王宇文. 2009. 建築物開口對風壓通風影響之研究. 建築學報:17-33.
    李城忠. 2016. 應用統計學: Spss & amos 範例分析完全手冊.
    洪粕宸, 許晉源. 2018. 濾毒罐選用管理研析.勞動部勞動及職業安全衛生研究所.
    陳春萬, 杜宗明. 2017. 選用呼吸防護具面臨問題探討. 工業安全衛生:22-38.
    勞動部職業安全衛生署. 2015. 危害性化學品評估及分級管理技術指引.
    勞動部職業安全衛生署. 2018. 呼吸防護計畫及採行措施指引.
    勞動部職業安全衛生署. 2020. 呼吸防護計畫技術參考手冊.
    黃訓道, 吳政霖, 李炳興, 李榮源, 莊貽琅. 2020. 呼吸防護具管理實務. 工業安全衛生:23-44.
    黃熾勳. 2015. 個人防護及緊急應變設備之產業利用現況分析.
    環保署. 2010. 健康風險評估技術規範.
    鐘順輝, 顏慶堂. 2015. 建立勞工作業場所使用被動式採樣器驗證準則之評估. 勞動部勞動及職業安全衛生研究所(ILOSH104-A301).

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE