簡易檢索 / 詳目顯示

研究生: 蔡育臻
Cai, Yu-Jhen
論文名稱: 隘口前之土砂堆積與侵蝕
The deposition and erosion in front of the river notch
指導教授: 戴義欽
Tai, Yih-Chin
學位類別: 碩士
Master
系所名稱: 工學院 - 水利及海洋工程學系
Department of Hydraulic & Ocean Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 74
中文關鍵詞: 隘口侵蝕率(NOC)數值方法地形座標系統
外文關鍵詞: Notche, Erosion rate, non-oscillating central, Unified Coordinate System
相關次數: 點閱:116下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 台灣地理環境及條件特殊加上部分土地利用不適當,每逢颱風豪雨時極易發生土砂災害,其中最廣為人知的就是土石流。故於山區河道上設置了許多攔砂壩減少土砂運移,期保全下游居民之生命財產安全。天然河道中常因河道地形的束縮造成河道流況改變產生天然或人工之隘口均能改變流速,造成於隘口附近土砂的侵淤。由於特定流量下不同束縮比會發生瓶頸效應使得隘口上游處產生水躍現象,流速降低迫使土砂於隘口上游處堆積,產生防砂壩類似之效果,具減少土砂災害以及管理之應用潛力。
    本研究以室內流槽進行水砂流的隘口實驗,透過高速攝影技術與粒子影像測速法(DPIV)探討隘口前的流速變化與土砂體的演化過程。搭配non-oscillating central (NOC)數值方法於地形座標系統上的數值模式來探討泥沙於隘口前的堆積演化。針對實驗量測之結果與不同侵蝕堆積率對於隘口前之堆積量準確率及命中率,且透過數值方法探討不同傾角、濃度、束縮率等條件對於堆積結果之影響。

    Because of the specific climatic and geological conditions, Taiwan are suffering from the sediment-related disasters, of which the most famous one is the debris flow. Hence, there are many check dam constructed for reducing the sediment transportation as well as mitigating the impacts of the debris flows. On the river bed in nature, one can find narrowing passes, where the flow velocity changes due to the variation of the topographic geometry, and deposition or erosion might take place. With respect to specific narrowing ratio, the hydraulic jump may take place where the sediment deposits near the narrowing, implying a potential of mitigating disaster as well as sediment-management.
    In the present study, experiments with respect to different narrowing ratios were performed in laboratory. The technique of image processing and particle image velocimetry (PIV) method were employed for investigating the flow dynamics and evolution of the deposition heap. A numerical model with non-oscillating central (NOC) method, based on terrain-fitted coordinate system, is applied to simulate the flow behavior and the development of deposition heap in one-dimensional case, so that we may evaluate the performance of variant erosion rates available in literature. Through numerical examples, the impacts of channel inclination, narrowing ratio and sedimentation concentration on the deposition heap were investigated.

    摘要 I 致謝 XIII 目錄 XV 圖目錄 XVII 表目錄 XX 符號 XXI 第一章 緒論 1 1.1 研究動機與目的 1 1.2 文獻回顧 2 1.2.1束縮渠道之水理現象 2 1.2.2 土砂災害 5 1.2.3 侵蝕率 7 1.3 研究方法及架構 8 第二章 基本理論 9 2.1 流場架構 9 2.2 控制方程式 12 2.3土石流理論 16 2.4侵蝕機制的啟動條件 19 2.4.1 Takahashi (1984) 19 2.4.2 Takahashi (1986) 20 2.4.3 Egashira (1993) 20 2.4.4 Hashimoto (2010) 21 2.4.5 Li and Duffy (2011) 21 2.4.6 Lai (2017) 22 第三章 地形座標系統與數值方法 25 3.1 地形座標系統 25 3.2 地形座標系統上之控制方程式 27 3.3 數值方法 28 3.4 參數設定 31 3.4.1 實驗條件設定 31 3.4.2 粒子影像測速法 (DPIV) 34 3.4.3 實驗流況與數值方法比較 36 第四章 結果與討論 40 4.1 不同侵蝕率對堆積結果之影響 40 4.2 不同條件下對隘口之影響 53 第五章 結論與建議 65 參考文獻 68

    [1] Albert Molinas & Khalid B. Marcus (1998) ” Choking in water supply structures and natural channels”, Journal of Hydraulic Research
    [2] B. Spinewine and H.Capart (2013) ”Intense bed-load due to a sudden dam-break.”J.Fulid Mech.,731,pp579-614
    [3] Chow, V. T. (1959). “Open channel hydraulics.” New York: McGraw-Hill Book Company, Inc.
    [4] Chaudhry, M. H. (2008). “Open-Channel Flow” ,Springer
    [5] Chanson, H., Brattberg, T. (2000). “ Experimental study of the air-water shear flow in a hydraulic jump. ” Int. J. Multiphase Flow 26, 583-607.
    [6] Cao, Z., Pender, G., Wallis, S., Carling, P. (2004). “Computational dam-breakhydraulics over erodible sediment bed.” J. Hydraul. Eng., 130, 689-703.
    [7] Crosta, G. B., Imposimato, S., Roddeman, D. (2009a). “Numerical mod-eling entrainment/deposition in rock and debris‐avalanches.” Eng. Geol.,109, 135-145.
    [8] Druault, P., Guibert, P., Alizon, F. (2005). “Use of proper orthogonal decomposition for time interpolation from PIV data: application to the cycle-to-cycle variation analysis of in-cylinder engine flows Exp.” Fluids, 39, 15.
    [9] Einstein, H. A. (1942). “Formulas for the transportation of bed load.” Trans. Am. Soc. Civ. Eng., 107(1), 561–597.
    [10] Egashira, S. (1993a). “Mechanism of sediment deposition from debris flow (part1).” Journal of the Japan Society of Erosion Conlrol Engineering 46(1), ser.186: 45-49 (in Japanese).
    [11] Egashira, S., Honda, N., Itoh, T. (2001). “Experimental study on the entrainment of bed material into debris flow.” Physics and Chemistry of the Earth (C) 26 (9), 645-650.
    [12] Fawer, C. (1937). “Study of some steady flows with curved streamlines.” Thesis. Université de Lausanne. La Concorde, Lausanne, Switzerland [in French].
    [13] Fraccarollo, L., Capart, H. (2002). “Riemann wave description of erosional dam-break flows.” J. Fluid Mech., 461, 183-228.
    [14] Fraccarollo, L., Larcher, M., Armanini, A. (2007). “Depth-averaged relations for granular-liquid uniform flows over mobile bed in a wide range of slope values. ” Granular Matter 9, 145-157.
    [15] Fogleman, M., Lumley, J. L., Rempfer, D., Haworth, D. (2004). “Application of the proper orthogonal decomposition to datasets of internal combustion engine flows.” J. Turbul. 5, 023.
    [16] Guo, J., Julien, P. Y. (2001). “Turbulent velocity profiles in sediment-laden flows. ” Journal of Hydraulic Research, IAHR, vol. 39, No. 1, pp. 11-23.
    [17] Gotoh, H., Yasuda, Y., Ohtsu, I. (2005). “Effect of channel slope on flow characteristics of undular hydraulic jumps.” Trans. Ecology and Environment 83(1), 33-42.
    [18] George, D. L., Iverson, R. M. (2014). “A depth-averaged debris-flow model that includes the effects of evolving dilatancy. II. Numericalpredic tions and experimental tests.”Proc. R. Soc. London, Ser. A, 470.
    [19] Hager, W. H., Bremen, R. (1989). “Classical hydraulic jump: sequent depths.” J. Hydraul. Res. 27(5), 565-585.
    [20] Hager, W. H., Bremen, R., Kawagoshi, N. (1990). “Classical hydraulic jump: length of roller.” J. Hydraul. Res. 28(5), 591-608.
    [21] Hutter, K., Siegel, M., Savage, S. B., Nohguchi, Y. (1993). “Two-dimensional spreading of a granular avalanche down an inclined plane. I. Theory.” Acta Mech. 100, 37-68.
    [22] Hsu, L., Dietrich, W. E., Sklar, L. S. (2008). “Experimental study of bed-rock erosion by granular flows.” J. Geophys. Res., 113.
    [23] Hashimoto, H. (2010). “土砂の移動現象とそのメカニズム.”日本流体力学会誌「ながれ」, pp. 193-202.
    [24] Hotta, N. (2012). “Basal interstitial water pressure in laboratory debris flows over a rigid bed in an open channel.” Nat. Hazard s Earth Syst. Sci.,12, 2499-2505.
    [25] Iverson, R. M., Reid, M. E., Iverson, N. R., LaHusen, R. G., Logan, M., Mann, J. E., Brien, D. L. (2000). “Acute Sensitivity of Landslide Rates to Initial Soil Porosity.” Science, vol. 290.
    [26] Iverson, R. M. (2003). “The debris-flow rheology myth.” in: C.L. Chen, D. Rickenmann (Eds.), Debris flow Mechanics and Mitigation Conference, Mills Press, Davos, 2003, pp. 303-314.
    [27] Ioana Luca , Yih-Chin Tai ,Chin-Yu Kuo, “Shallow geophysical mass flows down arbitrary topography”Springer,(2016)
    [28] Kaitna, R., Rickenmann, D. (2007). “A new experimental facility for laboratory debris flow investigation.” J. Hydraul Res. 45 (6), 797-810.
    [29] Kaitna, R., Dietrich, W. E., Hsu, L. (2014). “Surface slopes, velocity profiles and fluid pressure in coarse-grained debris flows saturated with water and mud.” J. Fluid Mech. 741, 377-403.
    [30] Liu, Q. C., Uwe, D. (1994). “Turbulence characteristics in free and forced hydraulic jumps.” Journal of hydraulic research, 32(6), 877-898.
    [31] Major, J. J., Pierson, T. C. (1992). “Debris flow rheology: Experimental analysis of fine-grained slurries.” Water Resour. Res., 28, 841-857.
    [32] Mambretti, S., Larcan, E., De Wrachien, D. (2007). “Debris flow and dam-break surges: Experimental analysis and two-phase modelling.” Quaderni di Idronomia Montana, 27, pp. 447-462.
    [33] McCoy, S. W., Kean, J. W., Coe, J. A., Tucker, G. E., Staley, D. M., Wasklewicz, T. A. (2012). “Sediment entrainment by debris flows: In situ measurements from the headwaters of a steep catchment.” Journal of Geophusical Research, vol. 117.
    [34] Nakatani, K. (2010). “GUIを実装した汎用土石流数値シミュレーションシステムの開発と適用.” Kyoto University Research Information Repository, PhD thesis.
    [35] Omid, M. H., Nasrabadi, M., Farhoudi, J. (2011). “Suspended sediment effects on hydraulic jump characteristics.” Proceedings of the Institution of Civil Engineers (ICE), Journal of water management, vol. 164, No. 2, pp. 91-101.
    [36] Papa, M., Egashira, S., Itoh, T. (2004). “Critical conditions of bed sediment entrainment due to debris flow.” Natural Hazards and Earth System Sciences 4, 469-474.
    [37] Prochaska, A. B., Santi, P. M., Higgins, J. D., Cannon, S. H. (2008). “A study of methods to estimate debris flow velocity.” Landslides 5: 431-444.
    [38] Reid, M. E., LaHunsen, R. G., Iverson, R. M. (1997). “Debris flow initiation experiments using diverse hydrologic triggers.” In Debris Flow HazardsMitigation: Mechanics, Prediction and Assessment, Chen CL (ed.). ASCE Proceedings. ASCE: 1-11.
    [39] Richard, G. L., Gavrilyuk, S. L. (2013). “The classical hydraulic jump in a model of shear shallow-water flows.” J. Fluid Mech, vol. 725, pp. 492-521.
    [40] Savage, S. B. (1979). “Gravity flow of cohesionless granular materials in chutes and channels.” Journal of Fluid Mechanics 92, 53-96.
    [41] Smart, G. M. (1984). “Sediment transport formula for steep channels.” J. Hydraul. Eng., 10.1061/(ASCE) 0733-9429 110:3(267), 267–276.
    [42] Savage, S. B., Hutter, K. (1989). “The motion of a finite mass of granular material down a rough incline.” Fluid Mech., 199, 177-215.
    [43] Shuangcai Li and Christopher J.Duffy. “Fully coupled approach to modeling shallow water flow, sediment transport, and bed evolution in rivers” ,WATER RESOURCES RESEARCH, VOL. 47, 2011
    [44] Strang, E. J., Fernando, H. J. S. (2001a). “Entrainment and mixing in stratified shear flows.” J. Fluid Mech., 428, 349-386.
    [45] Stancanelli, L. M., Lanzoni, S., Foti, E. (2015). “Propagation and deposition of stony debris flows at channel confluences.” Water Resource. Res., 51, 5100-5116.
    [46] Takahashi, K. (1984). “土石流の流れ学.” 日本流体力学会誌「ながれ」, pp. 307-317.
    [47] Takahashi, T., Kuang, S. F. (1986). “Formation of debris flow on varied slope bed.” Annuals Disaster Prevention Research Institute, Kyoto Univ., 29B-2, 343-359, 1986 (in Japanese).
    [48] Tai, Y. C., Noelle, S., Gray, J. M. N. T., Hutter, K. (2002). “Shock-capturing andfront-tracking methods for granular avalanches.” J. Comput. Phys., 175,269–301.
    [49] Tai, Y. C., Kuo, C. Y. (2008). “A new model of granular flows over gen-eral topography with erosion and deposition.” Acta Mech., 199, 71-96.
    [50] Tai, Y. C., Cheng, C. K., Lai, G. C. (2016). “An Approach to Adaptive Correction Factors in Depth-Averaged Model for Debris Flows. ” EGU General Assembly, p. 11806.
    [51] Tai.Y.C,Noelle.S,J.M.N.T. Gray and K.Hutter.”Shock-Capturing and Front Tracking Methods for Granular Avalanches.”Journal of Computational Physics,pp.269-301
    [52] Thielicke, W., Stamhuis, E. J. (2014). “PIVlab – Towards User-friendly, Affordable and Accurate Digital Particle Image Velocimetry in MATLAB.” Journal of open research software, 30, 2-30.
    [53] Zhou, J. G., Stansby, P. K. (1999). “2D shalliw water flow model for the hydraulic jump.” International Journal for Numerical Methods in Fluids, 29(4), 375-387.
    [54] Zee, C. H., Zee, R. (2016). “Formulas for the Transportation of Bed Load.” P. E., M. ASCE, 10.1061/(ASCE) HY.1943-7900.0001248.
    [55] 張豐年. (2011). “批判環評有條件通過-大安大甲溪水源聯合運用工程計劃案.” 台灣生態學會電子報, 第292期.
    [56] 梁惠儀., 林伯勳., 吳毓華., 卡艾瑋., 冀樹勇. (2013). “巴陵壩潰壩後對於石門水庫上游集水區河相變遷及沖淤演變影響模擬.” 中興工程季刊, 第119卷, pp. 19-30.
    [57] 詹錢登 (2000).,「土石流概論」,台北市:科技圖書股份有限公司。
    [58] 詹錢登(2016).,「土石流防災降雨警戒」,台北市:財團法人中興工程科技研究發展基金會。
    [59] 沈家齊 (2014).”土石流理論流速濃度與修正係數之探討” 國立成功大學水利及海洋工程學系碩士論文
    [60] 王冠智 (2015).” 速度及土砂濃度分布對剪力流與底床侵蝕影響之研究” 國立成功大學水利及海洋工程學系碩士論文
    [61] 黃亞婷 (2013).” 地形座標系統在可侵蝕底床潰壩剪力流之應用” 國立成功大學水利及海洋工程學系碩士論文
    [62] 賴冠岑 (2017).”窄渠中表面波以及水砂混合流體侵蝕率之探討” 國立成功大學水利及海洋工程學系碩士論文
    [63] 劉政儒 (2015).” 隘口土砂調節功能之渠槽實驗研究” 國立成功大學水利及海洋工程學系碩士論文
    [64] 林士勛(2015).” 隘口土砂調節功能之數值研究” 國立成功大學水利及海洋工程學系碩士論文
    [65] 葉士豪(2016).” 隘口土砂調節功能與機制之研究” 國立成功大學水利及海洋工程學系碩士論文
    [66] 林家興、林士勛、劉政儒、謝正倫(2017)“一維數值模式對隘口土砂調節功能之評估” 中華防災學刊 ,Vol.9, No.1 ,p31-40
    [67] 錢寧、萬兆惠 (2003)“泥沙運動力學” 北京, 科學出版社.

    無法下載圖示 校內:2019-05-23公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE