簡易檢索 / 詳目顯示

研究生: 李偉榮
Li, Wei-Jung
論文名稱: 細料含量對飽和粉質砂土動態行為影響之研究
The Effects of Fines Content on Dynamic Properties of Saturated Silty Sand
指導教授: 倪勝火
Ni, Sheng-huoo
學位類別: 碩士
Master
系所名稱: 工學院 - 土木工程學系
Department of Civil Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 142
中文關鍵詞: 粉質砂土細粒料含量共振柱剪力模數阻尼比
外文關鍵詞: silty sand, fines content, resonant column test, shear modulus, damping ratio
相關次數: 點閱:210下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 921地震時台灣地區粉質砂土層發生大規模的液化現象,其中發現含細粒料(通過200號篩顆粒)砂土有獨特力學特性。本研究的目的為探討不同細料含量對飽和砂試體其動態性質的影響。研究方法為使用低塑性細料飽和員林砂控制不同細粒料含量(乾淨砂、15%、30%、50%)與不同孔隙比(e = 0.7、e = 0.8、e = 1.0)在不同圍壓下(50 kPa、100 kPa、200 kPa)利用共振柱試驗求其動態特性,最後再以一原樣試體與重模試體比較。試驗的結果顯示,員林砂在孔隙比為0.7時隨細料含量的增加剪力模數會下降,而孔隙比為0.8、1.0時,剪力模數隨細料含量先下降在30%有最低點50%又升高;細粒料含量對阻尼比的影響則不明顯。而比較原樣試體與重模試體正規化剪力模數衰減曲線,發現其趨勢十分吻合。

    Liquefaction phenomenon had happened in western Taiwan widely during 921 earthquake, 1999. It was found that the fines material (the material pass through No. 200 sieve) is an important influence factor in the liquefaction area. This study focuses on the effects of different fines content (FC) on the dynamic properties of saturated specimen. The material tested is low plastic Yuan-Lin sand (YLS). The fines content considered are 5%, 15%, 30%, and 50%, while the void ratios considered are 0.7, 0.8, and 1.0. The resonant column apparatus is used to measure the dynamic properties of saturated reconstituted specimen in different confining pressure. The results show that the shear modulus of the reconstituted specimen decreases with increasing the fine content as the void ratio at 0.7. And, the shear modulus will firstly decrease as FC at 30%, however, it will increase with FC at 50% for the void ratio equal to 0.8 and 1.0. The effect of FC on damping ratio is insignificant. The result also shows that the normalize shear modulus attenuation curves matches well when comparing with undisturbed specimen and reconstituted specimen.

    摘要 I Abstract II 致謝 III 目錄 V 表目錄 IX 圖目錄 X 符號說明 XIV 第一章 緒論 1 1.1研究背景及動機 1 1.2研究目的 2 1.3研究方法 2 1.4論文內容概述 3 第二章 文獻回顧 6 2.1量測土壤動態性質方式 6 2.2土壤剪力模數影響因子 9 2.2.1剪應變振幅對剪力模數的影響 11 2.2.2孔隙比對剪力模數的影響 16 2.2.3 平均有效圍壓對剪力模數的影響 18 2.2.4 細粒含量對剪力模數的影響 19 2.3土壤阻尼比影響因子 30 2.3.1剪應變振幅對阻尼比的影響 30 2.3.2孔隙比對阻尼比的影響 31 2.3.3平均有效圍壓對阻尼比的影響 31 2.3.4細粒含量對阻尼比的影響 32 第三章 共振柱試驗原理 35 3.1 前言 35 3.2共振柱試驗基本假設 35 3.3 剪力模數之計算 36 3.4阻尼比之計算 37 3.4.1自由振動衰減曲線法 38 3.4.2半功率頻寬法 39 3.5共振柱之剪應變計算 43 3.5.1共振柱試驗之形狀函數 43 3.5.2剪應變的量測 45 第四章 試驗設備與試驗方法 49 4.1試驗設備 49 4.1.1試體固定與驅動元件 49 4.1.2圍壓控制系統 50 4.1.3反水壓控制與飽和系統 50 4.1.5量體積變化設備 50 4.1.6驅動、擷取與運算儀器 51 4.1.7共振柱儀器執行原理 52 4.2試體介紹與其基本物理性質 61 4.2.1重模試體 61 4.2.2原狀試體 62 4.3共振柱試驗 68 4.4實驗步驟 73 第五章 試驗結果與分析 78 5.1前言 78 5.2剪力模數 78 5.2.1有效圍壓對剪力模數的影響 78 5.2.2孔隙比對剪力模數的影響 79 5.2.3細粒料含量對最大剪力模數的影響 80 5.2.4孔隙水壓比對最大剪力模數的影響 82 5.2.5飽和試體對最大剪力模數的影響 83 5.3阻尼比 100 5.3.1孔隙比對阻尼比的影響 100 5.3.2細粒料含量對阻尼比的影響 101 5.4剪力波速 105 5.4.1有效圍壓對剪力波速的影響 105 5.4.2孔隙比對剪力波速的影響 105 5.4.3細粒料含量對剪力波速的影響 106 5.5原樣試體 110 5.5.1與重模試體之比較 110 5.5.2剪力模數衰減曲線 111 第六章 結論與建議 115 6.1結論 115 6.2建議 117 參考文獻 118 附錄A 飽和試體與乾試體比較圖 125 附錄B 共振柱波傳方程式推導 131 附錄C 阻尼比之公式推導 138 C.1 自由震盪衰減法 138 C.2 半功率頻寬法 139 自述 142

    1. Anderson, D.G., “Dynamic Modulus of Cohesives Soils, ” Thesis Presented to the University of Michigan, in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy, pp. 311 (1974).
    2. Baig, S., Picornell, M. and Nazarian, S., “Low Strain Shear Moduli of Cemented Sand,” Journal of Geotechnical and Geoenvironmental Engineering, ASCE, Vol. 123, No. 6, pp. 540-545 (1997).
    3. Barros, J.M.C., “Factors Affecting Dynamic Properties of Soil,” Ph.D. Thesis, University of Mechigan (1994).
    4. Drnevich, V.P., “Effect of Strain History on the Dynamic Properties of Sand, ” PH.D. Division, University of Michigan, Ann Arbor (1967).
    5. Hall, J.R., Jr. and Richart, F.E., Jr., “Dissipation of Elastic Wave Energy in Granular Soils,” J. Soil Mech. Found. Div. Proc., ASCE, Vol. 89, No. SM6, Nov., pp. 27-56 (1963).
    6. Hardin, B.O., and Black, W.L., “Vibration Modulus of Normally Consolidated Clay,” Journal of the Soil Mechanics and Foundations Division, ASCE, Vol. 94, No. SM2, March, pp. 353-369 (1968).
    7. Hardin, B.O. and Drnevich, V.P., “Shear Modulus and Damping in Soils: Measurement and Parameter Effects,” J. Soil Mech. Found. Div., ASCE, Vol. 98, No. SM6, 1972, pp. 603-624 (1972a).
    8. Hardin, B.O. and Drnevich, V.P., “Shear Modulus and Damping in Soils: Design Equations and Curves,” J. Soil Mech. Found. Div., ASCE, Vol. 98, No. SM7, July, pp. 667-692 (1972b).
    9. Hardin, B.O. and Drnevich, V.P., “Shear Modulus and Damping in Soil: Measurement and Parameter Effects,” Journal of the Soil Mechanics and Foundations Division, ASCE, Vol. 98, No. SM6, June, pp. 603-624 (1972).
    10. Hardin, B.O. and Richart, F.E., Jr., “Elastic Wave Velocity in Granular Soils,” Journal of Soil Mechanic and Foundation Engineering Division, ASCE, Vol. 89, No. SM6, pp. 27-56 (1963).
    11. Hardin, B.O., “The Nature of Damping in Stands,” J. Soil Mech. Found. Div., Proc., ASCE, Vol. 91, No. SM1, Jan., pp. 63-97 (1965).
    12. Hardin, B.O., “The Nature of Stress-Strain Behavior of Soils,” State-of-the-Art Report, Proc. ASCE Specialty Conference on Earthquake Engineering and Soil Dynamics, Pasadena, CA, Vol. 1, pp. 3-90 (1978).
    13. Hardin, B.O., and Drnevich, V.P., “Shear Modulus and Damping in Soil Measurement and Parameter Effects,” Journal of the Soil Mechanics and Foundations Div., ASCE, Vol. 98, No. SM6, June., pp. 603-624 (1972).
    14. Iwasaki, T. and Tatsuoka, F., “Effects of Grain Size and Grading on Dynamic Shear Moduli of Sands,” Soils and Foundations, JSSMFE, Vol. 17, No. 3, pp. 19-35 (1977).
    15. Iwasaki, T., Tasuoka, F. and Takagi, Y., “Shear Modulus of Sands under Cyclic Torsional Shear Loading,” Soil and Foundations, JSSMFE, Vol. 18, No. 1, pp. 39-56 (1978).
    16. Ishihara, K., Soils Behaviour in Earthquake Geotechnics, Clarendon press, Oxford (1996).
    17. Kokusho, T., “Cyclic Triaxial Test of Dynamic Soil Properties for Wide Strain Range,” Soils and Foundations, Japanese Society of Soil Mechanics and Foundation Engineering, Vol. 20, No. 2, pp. 45-60 (1980).
    18. Lade, P.V., and Yamamuro, J.A., “Effects of Non-Plastic Fines on Static Liquefaction of Sands,” Canadian Geotechnical Journal, Vol. 34, No. 6, pp. 918-928 (1997).
    19. Naeini, S.A., Baziar, M.H., “ Effect of Fines Content on Steady-State Strength of Mixed and Layered Samples of a Sand,” Soil Dynamics and Earthquake Engineering, Vol. 24, Issue 3, pp. 181-187, April (2004).
    20. Polito, C.P., and Martin, Ⅱ, J.R., “Effects of Nonplastic Fines on the Liquefaction Resistance of Sands,” Journal of Geotechnical and Geoenvironmental engineering, pp. 408-415 (2001).
    21. Richter, S., and Huber, G., “Time-Dependent Behavior of Fine-Grained Model Material in Resonant Column Experiments,” Granular Matter, Vol. 4, No. 6, Dec., pp. 195-206 (2004).
    22. Shibata, T., and Soelarno, D.S., “Stress Strain Characteristics of Sands Under Cyclic Loading,” Proc., Japanese Society of Civil Engineering, No. 239, pp. 57-65 (1975).
    23. Seed, H.B. and Idriss, I.M., “Soil Moduli and damping factors for Dynamic response analyses,” Report No. EERC 70-10, Earthquake Engineering Research Center, University of California, (1970).
    24. Seed, H.B., Tokimatsu, K., and Harder, L.F., “The Influence of SPT Procedures in Evaluating Soil Liquefaction Resistance,” Report UCB/EERC-84-15, Earthquake Engineering Research Center, University of California, Berkeley, (1984).
    25. Seed, H.B., Wong, R.T., Idriss, I.M. and Tokimatsu, K., “Moduli and Damping Factor for Dynamic Analysis of Cohesionless Soils,” J. Geotechn. Eng. Div., ASCE, Vol. 112, No. 11, November, pp. 1016-1032 (1986).
    26. SW-AJA, “Soil Behavior Under Earthquake Loading Conditions, State of the Art Evaluation of Soil Characteristics for Seismic Response Analyses: Prepared Under Subcontract,” No. 3354, Union Carbide Corp., for U.S. Atomic Energy Commission, Contract No. W-7405-eng-26, January. (1972).
    27. Silver, M.L., and Seed, H.B., “Deformation Characteritistics of Sands Under Cyclic Loading,” Journal of the Soil Mechanics and Foundations Division, ASCE, Vol. 97, No. SM8, pp. 1081∼1098 (1971).
    28. Silver, M.L., “Load Deformation and Strength Behavior of Soils under Dynamic Loading,” State-of-the-Art Paper, International Conference on Recent Advances in Geotechnical Earthquake and Soil Dynamics, St. Louis, Vol. 3, April, pp. 873-894 (1981).
    29. Tastsuoka, F., Iwasaki, T. and Takagi, Y., “Hysteretic Damping of Sands Under Cyclic Loading and Its Relation to Shear Moduli,” Soils and Foundations, JSSMFE, Vol. 18, No. 2, June, pp. 23-40 (1978).
    30. Thevanayagam, S., and Mardin, G. R., “Liquefaction in Silty Soils-Screening and Remediation Issues,” Soil Dynamics and Earthquake Engineering, Vol. 22, pp. 1035-1042 (2002).
    31. Vucetic, M. and Dobry, R., “Effect of Soil Plasticity on Cyclic Response,” ASCE, Journal of the Geotechnical Engineering Division, Vol. 117, No. 1, pp. 89-106 (1991).
    32. 陳堯中、游步上,「台北盆地粉質砂土之剪力模數與阻尼比」,中國土木水利工程學刊,第二卷,3期,pp. 213-223,1990年。
    33. 陳百騏,「三軸應力與單剪應力下台北盆地砂性土壤之剪力模數與阻尼比」,國立台灣大學土木工程研究所,碩士論文,1996年。
    34. 陳昱憲,「頻率比對台北盆地含細料砂土動態性質與地盤反應分析初步研究」,碩士論文,國立台灣大學土木工程研究所,1998年。
    35. 莊睦雄,「土壤阻尼性質與頻率之關係及對地盤反應之影響」,博士論文,國立臺灣大學土木工程研究所,1998年。
    36. 陳志瑋,「細料含量對乾粉質砂土動態行為影響之研究」,碩士論文,國立成功大學土木工程研究所,2010年。
    37. 鄧勝益,「共振柱試驗自動化之探討與研究」,碩士論文,國立成功大學土木工程研究所,1995年。
    38. 王金山,「共振柱試驗之土壤動力性質」,碩士論文,國立中央大學土木工程研究所,2004年。
    39. 吳偉特,「土壤動力學與大地工程」,地工技術雜誌,9期,pp. 5-19,1985年。
    40. 何文傑,「砂土承受垂直振動變形之初步研究」,碩士論文,成功大學土木工程學系,2007年。
    41. 李元智,「動性應變大小對飽和砂土孔隙水壓力上升型為之研究」,碩士論文,國立成功大學土木工程研究所,1990年。
    42. 李維峰、王淳讙、梅興泰、簡臣又,「不擾動取樣器 中日開發問世」,營建知訊, 287期,pp. 38-45,2006年。
    43. 林育正,「垂直/ 扭轉共振柱法應用於量測土壤動態特性之研究」,碩士論文,國立成功大學土木工程研究所,1993年。
    44. 林靜怡,「細粒料對粉土細砂小應變勁度之影響」,碩士論文,國立交通大學土木工程學系,2003年。
    45. 徐瑞旻,「共振柱試驗程式視窗化之研究」,碩士論文,國立成功大學土木工程學系,2002年。
    46. 黃信祥,「以現地冰凍土壤求得之剪力模數評估土壤之液化阻抗」,碩士論文,國立台灣科技大學營建工程系,2003年。
    47. 黃安斌,「台灣中西部粉/砂土壤液化行為之研究心得」地工技術雜誌,121期,pp.5-16,2009年。
    48. 黃耀道,「台灣中西部粉土質砂土液化行為分析」,博士論文,國立交通大學土木工程系,2007年。
    49. 廖廷勛,「過壓密對砂土動態性質及穩定狀態之影響」,碩士論文,國立台灣科技大學營建工程技術學系,1998年。

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE