| 研究生: |
陳立哲 Chen, Li-Che |
|---|---|
| 論文名稱: |
應用於高頻VIENNA功因修正轉換器之柔性切換電路 A Soft-Switching Circuit for High-Frequency VIENNA Power Factor Correction Converter |
| 指導教授: |
李嘉猷
Lee, Jia-You |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2021 |
| 畢業學年度: | 109 |
| 語文別: | 中文 |
| 論文頁數: | 121 |
| 中文關鍵詞: | VIENNA功率因數修正轉換器 、柔性切換 、零電壓導通 |
| 外文關鍵詞: | VIENNA PFC, Soft-switching, Zero voltage switching |
| 相關次數: | 點閱:143 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文針對高頻化三相交流輸入系統之功率因數修正轉換器,研製應用於VIENNA功因修正轉換器之柔性切換電路,採用相對於整合型架構,具有較高設計彈性之輔助電路,使主開關達到零電壓導通,配合禁能點設計,降低低電流下輔助電路造成之能量損失,提升整體系統效率,並透過緩振電路的設計解決輔助電路中,輔助電感產生的開關電壓應力問題。本文透過軟體模擬及硬體電路的實現,驗證本文架構於各輸入電流下之零電壓導通效果,且最高效率提升為2.5 %。最後基於平均電流控制模式,設計主開關與輔助開關控制,並於電路模擬軟體建置具緩振電路之柔性切換VIENNA 功率因數修正轉換器,根據模擬結果證明本文提出之功率因數修正轉換器,可於300 kHz開關切換頻率下達到零電壓切換效果。
This thesis focuses on the high-frequency power factor correction converters in three-phase AC system applications. To reduce the switching loss at high frequency, a soft-switching VIENNA power factor correction (PFC) converter is purposed, which provided zero voltage switching condition by auxiliary circuit. Furthermore, the problem of voltage stress across the auxiliary switches is solved by the addition of snubber circuit. In addition, the effectiveness of the proposed soft-switching VIENNA scheme has been validated through simulation and experimental results based on a 1 kW, 300 kHz hardware prototype with higher peak efficiency than hard-switching condition over the entire input current range. At last, the main switch and auxiliary switch control based on the average current control mode are designed and the simulation of soft-switching VIENNA PFC converter with snubber circuit are carried out. The simulated results proves that the purposed PFC converter could achieve zero voltage switching at 300 kHz switching frequency.
[1] J. W. Kolar and F. C. Zach, “A novel three-phase utility interface minimizing line current harmonics of high power telecommunications rectifiers modules,” IEEE Trans. Ind. Electron., vol. 44, pp. 456-467, Aug. 1997.
[2] M.-H. Park, J.-I. Baek, Y. Jeong, and G.-W. Moon, “An interleaved totem-pole bridgeless boost PFC converter with soft-switching capability adopting phase-shifting control,” IEEE Trans. Power Electron., vol. 34, no. 11, pp. 10610-10618, Nov. 2019.
[3] 鍾永祺,應用於固態變壓器之輸入串聯輸出並聯電源轉換器研製,國立成功大學電機工程學系碩士論文,2020年。
[4] D. Chapman, D. James, and C. J. Tuck, “A high density 48V 200A rectifier with power factor correction - an engineering overview, ” in Proc. IEEE Int. Telecommun. Energy Conf., 1993, pp. 118-125.
[5] R. Greul, S. D. Round, and J. W. Kolar, “The delta-rectifier : analysis, control and operation,” IEEE Trans. Power Electron., vol. 21, no. 6, pp. 1637-1648, Nov. 2006.
[6] Ali Sunbul, “Controlling the vienna rectifier using a simplified space vector pulse width modulation technique,” M. S. thesis, University of Ontario Institute of Technology, Oshawa, Ontario, Canada, 2019.
[7] T. Friedli, M. Hartmann, and J. W. Kolar, “The essence of three-phase PFC rectifier systems—part II,” IEEE Trans. Power Electron., vol. 29, no. 2, pp. 543-560, Feb. 2014.
[8] J. Millán, P. Godignon, X. Perpiñà, A. Pérez-Tomás, and J. Rebollo, “A survey of wide bandgap power semiconductor devices,” IEEE Trans. Power Electron., vol. 29, no. 5, pp. 2155-2163, May 2014.
[9] Krishna Shenai, “Future prospects of widebandgap (WBG) semiconductor power switching devices,” IEEE Trans. Electron Devices, vol. 62, no. 2, pp. 248-257, Feb. 2015.
[10] E. A. Jones, F. F. Wang, and D. Costinett, “Review of commercial GaN power devices and GaN-based converter design challenges,” IEEE J. Emerg. Sel. Topics Power Electron., vol. 4, no. 3, pp. 707-719, Sep. 2016.
[11] Y. Kim, J. Kim, K. Choi, B. Suh, and R. Kim, “A novel soft-switched auxiliary resonant circuit of a PFC ZVT-PWM boost converter for an integrated multichip power module fabrication,” IEEE Trans. Ind. Appl., vol. 49, no.6, pp. 2802-2809, Nov. 2013.
[12] Z. Yu, Y. Xia, and R. Ayyanar, “A simple ZVT auxiliary circuit for totem-pole bridgeless PFC rectifier,” IEEE Trans. Ind. Appl., vol.55, no. 3, pp. 2868-2878, May 2019.
[13] C. M. T. Cruz and I. Barbi, “A passive lossless snubber for the high power factor unidirectional three-phase three-level rectifier,” in Proc. IEEE IECON’99, vol. 2, 1999, pp. 909-914.
[14] F. L. Tofoli, E. A. A. Coelho, L. C. de Freitas, V. J. Farias, and J. B. Vieira, “Proposal of a soft-switching single-phase three-level rectifier,” IEEE Trans. Ind. Electron., vol. 55, no. 1, pp. 107-113, Jan. 2008.
[15] A. Ali, M. M. Khan, J. Yuning, Y. Ali, M. T. Faiz, and J. Chuanwen, “ZVS/ZCS Vienna rectifier topology for high power applications,” IET Power Electron., vol. 12, no. 5, pp. 1285-1294, Jan. 2019.
[16] L. Huber, Y. Jang and M. M. Jovanovic, “Performance evaluation of bridgeless PFC boost rectifiers,” IEEE Trans. Power Electron., vol. 23, no. 3, pp. 1381-1390, May 2008.
[17] 李宗磬,1.5 kW伺服器前級電源功率因數修正之系統性能分析與改善,國立交通大學電機與控制工程學系碩士論文,2008年。
[18] S. D. Round, P. Karutz, M. L. Heldwein, and J. W. Kolar, “Towards a 30 kW/liter, three-phase unity power factor rectifier,” in Proc. Power Convers. Conf., vol. 2, 2007, pp. 1251-1259.
[19] B. Liu, R. Ren, E. A. Jones, F. Wang, D. Costinett, and Z. Zhang, “A modulation compensation scheme to reduce input current distortion in GaN-based high switching frequency three-phase three-level vienna-type rectifiers,” IEEE Trans. Power Electron., vol. 33, no. 1, pp. 283-298, Jan. 2018.
[20] T. Zhao, L. Yang, J. Wang, and A. Q. Huang, “270 kVA solid state transformer based on 10 kV SiC power devices,” in Proc. IEEE Elect. Ship Technol. Symp., 2007, pp. 145-149.
[21] S. Chen, W. Yu, and D. Meyer, “Design and implementation of forced air-cooled 140kHz 20kW SiC MOSFET based Vienna PFC,” in Proc. IEEE Appl. Power Electron. Conf. Expo., 2019, pp. 1196-1203.
[22] Y. Tang, W. Ding, and A. Khaligh, “A bridgeless totem-pole interleaved PFC converter for plug-in electric vehicles,” in Proc. IEEE Appl. Power Electron. Conf. Expo., 2016, pp. 440-445.
[23] GaN Systems, “High efficiency CCM bridgeless totem pole PFC design using GaN E-HEMT” GS665BTP, Jan. 2018. [Online]. Available: https://gansystems.com/wp-content/uploads/2018/01/GS665BTP-REF-rev170905.pdf.
[24] R. W. De Donker and J. P. Lyons, “The auxiliary resonant commutated pole inverter,” in Proc. IEEE-IAS Annu. Meeting, 1990, pp. 1228–1235.
[25] K. Fujii, P. Koellensperger, and R. W. De Doncker, “Characterization and comparison of high blocking voltage IGBTs and IEGTs under hard- and soft-switching conditions,” IEEE Trans. Power Electron., vol. 23, no. 1, pp. 172-179, Jan. 2008.
[26] W. Dong, J.–Y. Choi, F. C. Lee, D. Boroyevich, and J. Lai, "Comprehensive evaluation of auxiliary resonant commutated pole inverter for electric vehicle applications," in Proc. IEEE Power Electron. Spec. Conf., 2001, pp. 625–630.
[27] J. Voss, J. Henn, and R.W. De Doncker, “Control techniques of the auxiliary-resonant commutated pole with special regards on the dual-active bridge DC-DC converter,” CPSS Transactions on Power Electronics and Applications, vol. 3, no. 4, pp. 352-361, Dec. 2018.
[28] J. Voss, J. Warmuz, D. Mathai, and R. W. De Doncker, “Adapted auxiliary-resonant commutated pole in the dual-active bridge,” IEEE J. Emerg. Sel. Top. Power Electron., vol. 7, no. 4, pp. 2553-2560, Dec. 2019.
[29] J. Lai, R. W. Young, G. W. Ott, J. W. McKeever, and F. Z. Peng, “A delta-configured auxiliary resonant snubber inverter,” IEEE Trans. Ind. Appl., vol. 32, no. 3, pp. 518-525, May/Jun. 1996.
[30] J.-S. Lai, “Practical design methodology of auxiliary resonant snubber inverters,” in Proc. 27th Annu. IEEE Power Electron. Spec. Conf., 1996, pp. 432-437.
[31] J.-S. Lai, J. Zhang, H. Yu, and H. Kouns, “Source and load adaptive design for a high-power soft-switching inverter,” IEEE Trans. Power Electron., vol. 21, no. 6, pp. 1667-1675, Nov. 2006.
[32] J.-Y. Choi, D. Boroyevich, J. Francis, and F.C. Lee, "A novel ZVT inverter with simplified auxiliary circuit", in Proc. IEEE Appl. Power Electron. Conf., pp. 1151-1157, 2001.
[33] Y. Li, F. C. Lee, and D. Boroyevich, “A three-phase soft-transition inverter with a novel control strategy for zero-current and near zero-voltage switching,” IEEE Trans. Power Electron., vol. 16, no. 5, pp. 710-723, Sep. 2001.
[34] C. Rizet, J. P. Ferrieux, P. Le Moigne, P. Delarue, and A. Lacarnoy, “A simplified resonant pole for three-level soft-switching PFC rectifier used in UPS,” IEEE Trans. Ind. Electron., vol. 57, no. 8, pp. 2739–2746, Aug. 2010.
[35] J. Roy, Y. Xia, and R. Ayyanar, “GaN-based high gain soft switching coupled-inductor boost converter,” in IEEE Energy Conversion Congress and Exposition (ECCE), 2017, pp. 1687-1693.
[36] N. Korada and R. Ayyanar, "A 3 kW 500 kHz E-mode GaN HEMT based soft-switching totem-pole PFC", in IEEE 7th Workshop on Wide Bandgap Power Devices and Applications (WiPDA) , 2019, pp. 237-244.
[37] Y. Suzuki, T. Teshima, I. Sugawara, and A. Takeuchi, “Experimental studies on active and passive PFC circuits,” in Proc. IEEE Int. Telecommun. Energy Conf., 1997, pp. 571-578.
[38] R. Redl and B. P. Erisman, “Reducing distortion in peak-current controlled boost power-factor correctors,” in Proc. IEEE Int. Power Electron. Congr., 1994, pp. 92-100.
[39] C. Zhou, R. B. Ridley, and F. C. Lee, “Design and analysis of a hysteretic boost power factor correction circuit,” in Proc. IEEE PESC, 1990, pp. 800-807.
[40] J. Rajagopalan, F. C. Lee, and P. Nora, “A general technique for derivation of average current mode control laws for single-phase power-factor correction circuits without input voltage sensing,” IEEE Trans. Power Electron., vol. 14, no. 4, pp. 663-672, Jul. 1999.
[41] L. Dixon, “Average current mode control of switching power supplies,” Unitrode Application note, U-140, pp. 356-369, 1999.
[42] C. Adragna, “L6561, enhanced transition mode power factor corrector,” STMicroelectronics Application note, AN966, 2003.
[43] J. S. Lai and D. Chen, “Design considerations for power factor correction boost converter operating at the boundary of continuous conduction mode and discontinuous conduction mode,” in Proc. IEEE APEC, 1993, pp. 267-273.
[44] Johann W. Kolar, “Vorrichtung und Verfahren zur Umformung von Drehstrom in Gleichstrom,” European Patent 0,660,498, 13 Dec., 1993.
[45] J. W. Kolar, H. Ertl, and F. C. Zach, “Design and experimental investigation of a three-phase high power density high efficiency unity power factor PWM (VIENNA) rectifier employing a novel power semiconductor module,” in Proc. IEEE APEC, 1996, pp. 514-523.
[46] T. Soeiro, T. Friedli, M. Hartmann, and J. W. Kolar, “New unidirectional hybrid delta-switch rectifier,” in Proc. Int. Power Electron. Conf., 2011, pp. 1474-1479.
[47] Thiago B. Soeiro, Johann W. Kolar, “Analysis of high-efficiency three-phase two- and three-level unidirectional hybrid rectifiers,” IEEE Trans. Ind. Electron., vol. 60, no. 9, pp. 3589-3601, Sep. 2013.
[48] T. Thangavelu, P. Shanmugam, and K. Raj, “Modelling and control of VIENNA rectifier a single phase approach,” IET Power Electron., vol. 8, no. 12, pp. 2471-2482, Dec. 2015.
[49] L. Balogh, “Fundamentals of MOSFET and IGBT gate driver circuits,” Texas Instruments Application Report, SLUA618, 2018.
[50] On Semiconductor, “Power factor correction stages operating in critical conduction mode,” On Semiconductor Application Report, AND8123/D, 2014.
[51] S. Abdel-Rahman, F. Stückler, and K. Siu, “PFC boost converter design guide,” Infineon Application Report, AN_201409_PL52_009, 2014.
[52] Texas Instruments, “Vienna rectifier-based, three-phase power factor correction (PFC) reference design using C2000™ MCU” TIDUCJ0B, Apr. 2020. [Online]. Available: https://www.ti.com/tool/TIDM-1000
[53] C3M0065090D Datasheet, Cree, 2019.
[54] IDH16G120C5 Datasheet, Infineon, 2017.
[55] dsPIC33CK256MP508 Family Datasheet, Microchip Technology, 2017-2018.
[56] dsPIC33/PIC24 FRM—High-Resolution PWM with Fine Edge Placement Family Datasheet, Microchip Technology, 2018.
[57] TL08xx FET-Input Operational Amplifiers Datasheet, Texas Instruments, 2020.
[58] D. Jones and M. Stitt, “PRECISION ABSOLUTE VALUE CIRCUITS,” Burr-Brown Application Bulletin, Sboa068, 1997.
校內:2026-08-10公開