簡易檢索 / 詳目顯示

研究生: 莊宜臻
Chuang, Yi-Chen
論文名稱: 微波退火技術應用於高遷移率半導體材料之活化研究
Studies on Activation of High-Mobility Semiconductor Materials by Using Microwave Annealing
指導教授: 李文熙
Lee, Wen-Hsi
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 英文
論文頁數: 73
中文關鍵詞: 低能量微波退火Ⅲ-V族材料固態磊晶再成長電子活化
外文關鍵詞: Low-energy microwave annealing, Germanium, Ⅲ-V group material, solid phase epitaxial recrystallization (SPER), Electrical activation
相關次數: 點閱:110下載:17
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   隨著半導體元件尺寸微縮,矽電晶體已達到其材料限制,研究新型可替代矽的新材料變為重要。本論文中,將研究有潛力的新型材料─鍺及Ⅲ-V族化合物半導體,以低能量低劑量離子佈值摻雜後,為了維持超淺接面,達到最好活化效果,本論文利用了新型退火方式─微波退火應用於新材料的活化以達到超淺接面的效果。

      微波退火是一個以低能量、較長時間的退火製程,相較於傳統的高溫熱退火,例如傳統的RTA是以較高溫度、短時間來退火,但是高溫可能導致摻雜離子擴散,太短的時間可能促使晶格修復不完全。

      本論文中,將分兩種材料鍺與Ⅲ-V族進行研究。第一部分,以不同離子佈值溫度(-50℃、室溫、150℃)摻雜磷離子進入材料鍺,接著使用低能量微波退火與傳統RTA來退火,並以TEM、拉曼光譜、SIMS、霍爾量測等分析方法做分析比較,發現使用第一階段微波退火能量2P(1.2kW)持續時間75秒,就能夠使被磷離子打亂的非晶態鍺完整恢復成結晶態鍺達到固態磊晶再成長(SPER),而接著使用第二階段微波退火能量1.5P(0.9kW)持續時間300秒,能夠有效地將摻雜磷離子活化(activation),其片電阻值低至78 ohm/sq,活化程度高達1020cm-3,霍爾量測之遷移率1298 cm2/Vs,使用SIMS量測結果發現無擴散現象發生,其背景濃度(@5E18)之接面深度約為25 nm,實現了超淺接面。

      第二部分,以佈值溫度80℃及150℃摻雜矽離子進Ⅲ-V族材料In0.47Ga0.53As(300 nm)/InP 基底,分別使用微波退火及傳統RTA退火研究固態磊晶再成長與電子活化情形。以拉曼光譜分析,發現微波退火能量2.5P(1.5kW)持續時間100秒時,能夠完整達到固態磊晶再成長;使用穿透式電子顯微鏡分析,發現使用佈值溫度在150℃時能夠將離子佈值時造成的非晶狀態修復成晶格,而接著使用微波退火2.5P(1.5kW)持續時間100秒後,能將缺陷完整修復達到固態磊晶再成長,與拉曼光譜結果一致;接著使用二次離子質譜證明微波退火有很好的控制擴散能力;最後使用光激發螢光光譜分析,發現退火能量3P(1.8kW)持續時間100秒時,就能夠將摻雜矽離子活化了,而佈值溫度在150℃微波退火3.5P(2.1kW)之活化程度最好。

      本論文證明新型微波退火方式應用於研究新型材料退火的活化上是成功的,證明微波退火比傳統RTA退火溫度低,且能夠以低能量退火達到固態磊晶再成長及活化的效果,不會因高溫而產生熱擴散現象,也無反活化情形發生。

      As semiconductors devices scale down, silicon transistors would reach its limitation below 10 nm. Researching for the novel materials, which could replace silicon, is important. In this thesis, we study the new potential materials―germanium and the group Ⅲ-V compound semiconductors which are ion implanted with low energy and low dose. In order to keep the ultra-shallow junction and get the best activation, the new annealing technology─microwave annealing (MWA) is employed in this thesis.

    Microwave annealing is a processing with low energy and longer period. In contrast to the conventional high thermal annealing methods such as rapid thermal annealing (RTA), it is a process with high temperature and ultra-short time. However, the high temperature could cause the dopants diffusion and the ultra-short time might make the destroyed lattices repaired not completely.

      In this thesis, there are two studies on activation of P doped in Ge and activation of Si doped in In0.47Ga0.53As by microwave annealing. The one part is to ion implant with phosphorous at different temperature (-50℃, Room Temperature(RT), and 150℃) into germanium wafers, and they are annealed by low-energy MWA and traditional RTA respectively. After annealing, TEM, Raman spectrum, SIMS, and Hall Effect are used to analyze the Ge samples. We discover that using the first-step MWA energy 2P(1.2kW) for 75 s could make the non-crystal state Ge which is destroyed by phosphorous ions recover to crystal state to achieve solid phase epitaxial recrystallization (SPER). Next, using the second-step MWA energy 1.5P(0.9kW) for 300 s could make the phosphorous dopants activate effectively. The Ge sample, which is annealed by two-step MWA, has the lowest value 78 ohm/sq of sheet resistance, and its activation level up to 1020cm-3, and its Hall mobility higher to 1298 cm2/Vs. There is no dopant diffusion occurring by using SIMS analysis, and the junction depth defined at a background concentration @5E18 is about 25 nm to achieve the ultra-shallow junction.

      The other part is to ion implant with silicon at different temperature (80℃, and 150℃) into In0.47Ga0.53As(300 nm)/InP substrate, and they are annealed by low-energy MWA and traditional RTA, respectively to research SPER and electrical activation. By using Raman spectrum, we discover that using MWA energy 2.5P(1.5kW) for 100 s could make the Ⅲ-V materials achieve SPER by repairing fully. From TEM images, the amorphous layer caused by ion implantation could be recovered to crystal lattices during implantation temperature at 150℃. After annealing by MWA 2.5P(1.5kW) for 100 s, the defects of stacking faults are repaired completely to attain SPER, and it can correspond the Raman results. By using SIMS analysis, it can demonstrates that MWA have better ability to control dopants diffusion. Finally, by using Photoluminescence spectroscopy analysis, the MWA energy 3P(1.8kW) for 100 s could just make silicon dopants get activation. After annealing by MWA 3.5P(2.1kW) for 100 s of implantation at 150℃ has the best activation that it has the highest peak.

      Our studies have demonstrated that the novel MWA technology applying to researching new materials in electrical activation is successful. It proves that the actual temperature of the potential MWA is lower than traditional RTA. The low-energy MWA could achieve SPER and dopant activation without diffusion due to high thermal effect, and de-activation would not occur.

    Content 摘要…………………………………I Abstract…………………………………III 誌謝…………………………………V Content…………………………………VI Figure caption…………………………………VIII Table caption…………………………………X Chapter 1. Introduction…………………………………1 1.1 High-Mobility Semiconductor Materials…………………………………1 1.1.1 Germanium…………………………………2 1.1.2 Ⅲ-Ⅴgroup…………………………………3 1.2 New annealing technology…………………………………4 1.2.1 The advantage of Microwave annealing ……………………………6 1.2.2 Previous literature of Microwave annealing…………………………………8 1.3 Motivation…………………………………10 Chapter 2. Literature review…………………………………11 2.1 Activation of Phosphorus doped in Germanium…………………………………11 2.2 Activation of Silicon doped in In0.53Ga0.47As…………………………………17 Chapter 3. Experimental Scheme…………………………………21 3.1 Experiment of Germanium…………………………………21 3.2 Experiment of Ⅲ-Ⅴgroup…………………………………24 3.3 Analysis technology…………………………………26 3.3.1 TEM …………………………………26 3.3.2 Sheet resistance…………………………………26 3.3.3 Hall Effect measurement …………………………………28 3.3.4 Secondary Ion Mass Spectrometry (SIMS)…………………………………29 3.3.5 Raman spectrum…………………………………31 3.3.6 PL spectrum…………………………………31 Chapter 4. Result and Discussion of Germanium…………………………………33 4.1 Correlation of annealing temperature between RTA and MWA………………………33 4.2 One–step Microwave annealing…………………………………38 4.3 Two–step Microwave annealing…………………………………43 4.4 n–MOS devices…………………………………49 Chapter 5. Result and Discussion of Ⅲ-Ⅴgroup…………………………………52 5.1 Effect of ion implantation temperature…………………………………52 5.2 Effect of Annealing…………………………………53 5.2.1 Micrograph Analysis…………………………………53 5.2.2 Spectral Analysis…………………………………54 5.2.3 SIMS Analysis…………………………………63 5.2.4 Electrical Characterization…………………………………65 Chapter 6. Conclusion and Future Work …………………………………67 Reference…………………………………71

    [1] M. Koike, Y. Kamata, T. Ino, D. Hagishima, K. Tatsumura, M. Koyama and A. Nishiyama, "Diffusion and activation of n-type dopants in germanium," J. Appl. Phys., 104, 023523, 31 July 2008.
    [2] J. Kim, S. W. Bedell and D. K. Sadana, "Multiple implantation and multiple annealing of phosphorus doped germanium to achieve n-type activation near the theoretical limit," Appl. Phys. Lett, no. 101, 112107, 2012.
    [3] W. G. Opyd, J. F. Gibbons and A. J. Mardinly, "Precipitation of impurities in GaAs amorphized by ion implantation," Appl. Phys. Lett., vol. 53, no. 1515, 1988.
    [4] M.-H. Tsai, C.-T. Wu and W.-H. Lee, "Activation of boron and recrystallization in Ge preamorphization implant structure of ultra shallow junctions by microwave annealing," Japanese Journal of Applied Physics, 53, 041302, 2014.
    [5] F.-K. Hsueh, Y.-J. Lee, K.-L. Lin, M. I. Current, C.-Y. Wu and T.-S. Chao, "Amorphous-Layer Regrowth and Activation of P and As Implanted Si by Low-Temperature Microwave Annealing," IEEE Transactions on Electron Devices, vol. 58, no. 7, JULY 2011.
    [6] Y.-J. Lee, T.-C. Cho, S.-S. Chuang, F.-K. Hsueh, Y.-L. Lu, P.-J. Sung, H.-C. Chen, M. I. Current, T.-Y. Tseng, T.-S. Chao, C. Hu and F.-L. Yang, "Low-Temperature Microwave Annealing Processes for Future IC Fabrication—A Review," IEEE TRANSACTIONS ON ELECTRON DEVICES, vol. 61, no. 3, MARCH 2014.
    [7] T. Yamaguchi, Y. Kawasaki, T. Yamashita, Y. Yamamoto, Y. Goto, J. Tsuchimoto, S. Kudo, K. Maekawa, M. Fujisawa and K. Asai, "Low-resistive and homogenous NiPt-silicide formation using ultra-low temperature annealing with microwave system for 22nm-node CMOS and beyond," Electron Devices Meeting (IEDM), 6-8 Dec 2010.
    [8] J. M. Kowalski, J. E. Kowalski and B. Lojek, "Microwave Annealing for Low Temperature Activation of As in Si," Advanced Thermal Processing of Semiconductors (RTP) IEEE International Conf, pp. 51 - 56, 2-5 Oct 2007.
    [9] C. Hu, P. Xu, C. Fu, Z. Zhu, X. Gao, A. Jamshidi, M. Noroozi, H. Radamson, D. Wu and S.-L. Zhang, "Characterization of Ni(Si,Ge) films on epitaxial SiGe(100) formed by microwave annealing," Appl. Phys. Lett., no. 101, p. 092101, 2012.
    [10] T. L. Alford, D. C. Thompson, J. W. Mayer and N. D. Theodore, "Dopant activation in ion implanted silicon by microwave annealing," J. Appl. Phys., 106, 114902, 2009.
    [11] A. Chroneos, "Defect Processes in Germanium," 2008.
    [12] M. S. Carroll and R. Koudelka, "Accurate modelling of average phosphorus diffusivities in germanium after long thermal anneals: evidence of implant damage enhanced diffusivities," Semicond. Sci. Technol., vol. 22, no. S164-S167, 2007.
    [13] C. Thomidis, M. Barozzi, M. Bersani, V. Ioannou-Sougleridis, N. Z. Vouroutzis, B. Colombeau and D. Skarlatos, "Strong Diffusion Suppression of Low Energy–Implanted Phosphorous in Germanium by N2 Co-Implantation," ECS Solid State Letters, 4 (6) P47-P50, 2015.
    [14] D. Skarlatos, C. Tsamis, M. Perego and M. Fanciulli, "Oxidation-enhanced diffusion of boron in very low-energy N2 + -implanted silicon," Journal of Applied Physics, vol. 97, no. 113534, 2005.
    [15] D. Skarlatos, M. Bersani, M. Barozzi, D. Giubertoni, N. Z. Vouroutzis and V. Ioannou-Sougleridisd, "Nitrogen Implantation and Diffusion in Crystalline Germanium: Implantation Energy, Temperature and Ge Surface Protection Dependence," ECS Journal of Solid State Science and Technology, vol. 1, pp. 315-319, 2012.
    [16] K. S. Jones, A. G. Linda, C. Hatemb, S. Moffattc and M. C. Ridgwayd, "A Brief Review of Doping Issues in III-V Semiconductors," ECS Transactions, vol. 53, no. 3, pp. 97-105, 2013.
    [17] A. G. Lind, N. G. Rudawski, N. J. Vito, C. Hatem, M. C. Ridgway, R. Hengstebeck, B. R. Yates and K. S. Jones, "Maximizing electrical activation of ion-implanted Si in In0.53Ga0.47As," APPLIED PHYSICS LETTERS, vol. 103, no. 232102, 2013.
    [18] A. Alian, G. Brammertz, N. Waldron, C. Merckling, G. Hellings, H. C. Lin, W. E. Wang, M. Meuris, E. Simoen, K. D. Meyer and M. Heyns, "Silicon and selenium implantation and activation in In0.53Ga0.47As under low thermal budget conditions," Microelectronic Engineering, vol. 88, pp. 155-158, 2011.
    [19] N. Ioannou, D. Skarlatos, C. Tsamis, C. A. Krontiras, S. N. Georga, A. Christofi and D. S. McPhail, "Germanium substrate loss during low temperature annealing and its influence on ion-implanted phosphorous dose loss," Appl. Phys. Lett., 93, 101910, 2008.
    [20] A. G. Lind, N. G. Rudawski, N. J. Vito, C. Hatem, M. C. Ridgway, R. Hengstebeck, B. R. Yates and K. S. Jones, "Maximizing electrical activation of ion-implanted Si in In0.53Ga0.47As," APPLIED PHYSICS LETTERS, vol. 103, 2013.
    [21] F. S. M. Hashemi, S. Thombare, A. F. i. Morral, M. L. Brongersma and P. C. McIntyre, "Effects of surface oxide formation on germanium nanowire band-edge photoluminescence," Appl. Phys. Lett., 102, 251122 , 2013.
    [22] S. Takagi, R. Zhang, J. Suh, S.-H. Kim, M. Yokoyama, K. Nishi and M. Takenaka, "III–V/Ge channel MOS device technologies in nano CMOS era," Japanese Journal of Applied Physics, 54, 06FA01, 2015.
    [23] A. Lind, M. Gill, C. Hatem and K. Jones, "Electrical activation of ion implanted Si in amorphous and crystalline In0.53Ga0.47As," Nuclear Instruments and Methods in Physics Research B, vol. 337, pp. 7-10, 2014.
    [24] C. Licoppe, Y. I. Nissim, C. Meriadec and P. Hénoc, "Recrystallization kinetics pattern in III‐V implanted semiconductors," Appl. Phys. Lett., vol. 50, no. 1648, 1987.
    [25] S. PEARTON, "ION IMPLANTATION IN III–V SEMICONDUCTOR TECHNOLOGY," Int. J. Mod. Phys. B, vol. 07, no. 4687, 1993.
    [26] J. Williams and M. Austin, "Low‐temperature epitaxial regrowth of ion‐implanted amorphous GaAs," Appl. Phys. Lett., vol. 36, no. 994, 1980.
    [27] S. Hogg, D. Llewellyn, H. Tan and M. Ridgway, "Solid-phase epitaxial growth of AlxGa1−xAsAlxGa1−xAs alloys as a function of Al content," Appl. Phys. Lett., vol. 71, no. 1397, 1997.
    [28] S. Hernández, R. Cuscó, N. Blanco, G. González-Dı́az and L. Artús, "Study of the electrical activation of Si + -implanted InGaAs by means of Raman scattering," JOURNAL OF APPLIED PHYSICS, vol. 93, no. 5, 1 MARCH 2003.
    [29] Institute of Physics of the Czech Academy of Sciences, [Online]. Available: http://www.fzu.cz/en/oddeleni/department-of-semiconductors/selected-results/record-wavelength-emitted-from-inasgaas-quant.

    下載圖示 校內:2021-08-25公開
    校外:2021-08-25公開
    QR CODE