| 研究生: |
張軼倫 Chang, Yi-Lun |
|---|---|
| 論文名稱: |
以氧化銅為傳輸層之多層噴霧式鈣鈦礦太陽能電池之研究 Investigation of Spray-cast Multilayer Perovskite Solar Cell Utilizing CuO Transport Layer |
| 指導教授: |
許渭州
Hsu, Wei-Chou |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 微電子工程研究所 Institute of Microelectronics |
| 論文出版年: | 2018 |
| 畢業學年度: | 106 |
| 語文別: | 中文 |
| 論文頁數: | 65 |
| 中文關鍵詞: | 鈣鈦礦太陽能電池 、噴霧沉積法 、氧化銅 |
| 外文關鍵詞: | Perovskite solar cell, Spray deposition, Cupric oxide |
| 相關次數: | 點閱:100 下載:8 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在近幾年的研究中,鈣鈦礦太陽能電池在效率表現上展現飛躍性的成長,而被視為一個極具潛力的光伏材料。然而,其一直難以進入大規模生產,主要原因有兩點。首先,由於鈣鈦礦材料本身對環境中水氧的低抵抗力,元件在可靠度上有很大的改善空間,且鈣鈦礦主動層通常需要在充滿氮氣的手套箱中製作,也增加製作上的不便。第二,在鈣鈦礦太陽能電池的研究中,多數採用旋轉塗佈製程,此製程雖能簡易地製備出品質良好的薄膜,但其過程會浪費許多材料,無形中增加了製造成本。為了使鈣鈦礦太陽能電池在未來能邁向大規模的工業化製造,本論文改善了上述的兩點。PEDOT:PSS 是普遍被使用作為鈣鈦礦太陽能電池中電洞傳輸層的材料,但因其材料本身的酸性和吸水性,容易加速鈣鈦礦主動層的降解反應,進而大幅降低元件的可靠度。因此,在本論文的第一部分,我們以噴霧沉積氧化銅來取代 PEDOT:PSS,改善了元件的可靠度。在第二部分,我們使用一種快速製備鈣鈦礦層的噴霧沉積法,使其可在週遭環境下製作,且不需要任何的後退火製程。最後,我們結合第一部份的氧化銅電洞傳輸層,實作出在整個製備過程中,無使用手套箱、無旋轉塗佈的多層噴霧式鈣鈦礦太陽能電池。
In the research of recent years, perovskite solar cells have exhibited an extraordinary advance in power conversion efficiency, being regarded as an extremely promising photovoltaic material. However, there are two main reasons it cannot be applied to large scale manufacture. First, since perovskite materials are instable against moisture and oxygen in ambient condition, there is much room for improvement of device stability. Moreover, the perovskite active layer usually needs to be deposited in N2-filled glove box, also increasing the inconvenience of fabrication. Second, in the research of perovskite solar cells, the spin coating method is the mostly applied. Though it is capable of depositing thin films with good quality simply, it will waste a lot of materials in the process and unconsciously increase the manufacturing costs. In order to make perovskite solar cells development toward large-scale industrial manufacture in the future, we improved the two points mentioned above in the thesis. PEDOT:PSS is a commonly used material as hole transporting layer in perovskite solar cells, even though, the acidy and hygroscopicity of the material tend to accelerate the degradation of perovskite active layer, further reducing the device stability significantly. As a result, in the first part of this thesis, we replaced PEDOT:PSS with spray-casted CuO and increased the stability of devices. In the second part, we utilized a fast preparation of perovskite active layer by spray deposition, making it capable of fabricating under ambient condition, and it didn’t need any post-annealing method. Finally, we combined the CuO hole transporting layer in the first part, demonstrating the glove-box-free spin-coating-free spray cast multilayer perovskite solar cells.
[1] D. M. Chapin, C. S. Fuller and G. L. Pearson, "A new silicon p‐n junction photocell for converting solar radiation into electrical power," Journal of Applied Physics, vol.25, no. 5, pp. 676–677, 1954.
[2] Wikipedia.org, "Timeline of solar cells," [Online]. Available: https://en.wikipedia.org/wiki/Timeline_of_solar_cells.
[3] M. Bhogaita, A. D. Shukla and R. P. Nalini, "Recent advances in hybrid solar cells based on natural dye extracts from Indian plant pigment as sensitizers," Solar Energy, pp. 212-224, 2016.
[4] C. H. Lee, H. R. Hsu and S. Y. Tsai, "Progress Report on Perovskite-based Solar Cells,"Industrial Materials, pp. 85-93, 2014.
[5] Ossila.com, "Perovskites and Perovskite Solar Cells: An Introduction," [Online].
Available: https://www.ossila.com/pages/perovskites-and-perovskite-solar-cells-an introduction.
[6] Chemicalstructure.net, "Perovskite Structure," [Online]. Available:
https://chemicalstructure.net/portfolio/perovskite/.
[7] K. Akihiro, T. Kenjiro, S. Yasuo and M. Tsutomu, "Organometal halide perovskites as visible-light sensitizers for photovoltaic cells," Journal of the American Chemical Society, vol. 131, no. 17, pp. 6050–6051, 2009.
[8] National Renewable Energy Laboratory (NREL), "Research Cell Record Efficiency Chart," [Online]. Available: https://www.nrel.gov/pv/assets/images/efficiency chart.png.
[9] T. M. Schmidt, T. T. Larsen-Olsen, J. E. Carle, D. Angmo and F. C. Krebs, "Upscaling of Perovskite Solar Cells: Fully Ambient Roll Processing of Flexible Perovskite Solar Cells with Printed Back Electrodes," Advanced Energy Materials, pp. 1500569, 2015.
[10] Y. Deng, E. Peng, Y. Shao, Z. Xiao, Q. Dong and J. Huang, "Scalable fabrication of efficient organolead trihalide perovskite solar cells with doctor-bladed active layers,"Energy & Environmental Science, pp. 1544-1550, 2015.
[11] S. G. Li, K. J. Jiang, M. J. Su, X. P. Cui, J. H. Huang, Q. Q. Zhang, X. Q. Zhou, L. M. Yang and Y. L. Song, "Inkjet printing of CH3NH3PbI3 on a mesoscopic TiO2 film for highly efficient perovskite solar cells," Journal of Materials Chemistry, pp. 9092-9097,2015.
[12] H. Chen, F. Ye, W. Tang, J. He, M. Yin, Y. Wang, F. Xie, E. Bi, X. Yang, M. Grätzel and L. Han,“A solvent- and vacuum-free route to large-area perovskite films for efficient solar modules,”Nature, pp. 92-95, 2017.
[13] A. T. Barrows, A. J. Pearson, C. K. Kwak and A. D. F. Dunbar,“Efficient planar heterojunction mixed-halide perovskite soalr cells deposited via spray-deposition,”Energy & Environmental Science, pp. 2944-2950, 2014.
[14] W. C. Chang, D. H. Lan, K. M. Lee, X. F. Wang and C. L. Liu, "Controlled Deposition and Performance Optimization of Perovskite Solar Cells Using Ultrasonic Spray Coating of Photoactive Layers," ChemSusChem, pp. 1405-1412, 2017.
[15] Z. Bi, Z. Liang, X. Xu, Z. Chai, H. Jin, D. Xu, J. Li, M. Li and G. Xu, "Fast preparation of uniform large grain size perovskite thin film in air condition via spray deposition method for high efficient planar solar cells,"Solar Energy Materials & Solar Cells, pp.13-20, 2017.
[16] D. K. Mohamad, J. Griffin, C. Bracher, A. T. Barrows and D. G. Lidzey, "Spray-Cast Multilayer Organometal Perovskite Solar Cells Fabricated in Air," Adv. Energy Mater., pp. 1600994, 2016.
[17] J. E. Bishop, D. K. Mohamad, M. W. Stringer, A. Smith and D. G. Lidzey, "Spray-cast multilayer perovskite solar cells with an active-area of 1.5 cm2," Scientific REPORTS,2017.
[18] J. H. Heo, M. H. Lee, M. H. Jang and S. H. Im, "Highly efficient CH3NH3PbI3−xClx mixed halide perovskite solar cells prepared by re-dissolution and crystal grain growth via spray coating," J. Mater. Chem. A, pp. 17636 –17642, 2016.
[19] L. Hu, K. Sun, M. Wang, W. Chen, B. Yang, J. Fu, Z. Xiong, X. Li, X. Tang, Z. Zang,S. Zhang, L. Sun and M. Li, "Inverted Planar Perovskite Solar Cells with a High Fill Factor and Negligible Hysteresis by the Dual Effect of NaCl-Doped PEDOT:PSS," ACS Appl. Mater. Interfaces, pp. 43902–43909, 2017.
[20] W. Sun, Y. Li, Y. Xiao, Z. Zhao, S. Ye, H. Rao, H. Ting, Z. Bian, L. Xiao, C. Huang and Z. Chen, "An ammonia modified PEDOT: PSS for interfacial engineering in inverted planar perovskite solar cells," Organic Electronics, pp.22-27, 2017.
[21] F. Hou, Z. Su, F. Jin, X. Yan, L. Wang, H. Zhao, J. Zhu, B. Chu and W. Li, "Efficient and stable planar heterojunction perovskite solar cells with an MoO3/PEDOT:PSS hole transporting layer," Naoscale, pp. 9427-9432, 2015.
[22] W. Y. Chen, L. L. Deng, S. M. Dai, X. Wang and C. B. Tian, "Low-cost solution processed copper iodide as an," J. Mater. Chem. A, pp. 19353-19359, 2015.
[23] J. A. Christians, R. C. M. Fung and P.V. Kamat, "An inorganic hole conductor for organo-lead halide perovskite solar cells. Improved hole conductivity with copper iodide," J. Am. Chem. Soc., pp. 758–764, 2014.
[24] S. Y. Ye, W. H. Sun, Y. L. Li, W. B. Yan, H. T. Peng, Z. Q. Bian, Z. W. Liu and C. H. Huang, "CuSCN-based inverted planar perovskite solar cell with an average PCE of 15.6%," Nano Lett., pp. 3723–3728, 2015.
[25] Z. Wu, S. Bai, J. Xiang, Z. Yuan, Y. Yang, W. Cui, X. Gao, Z. Liu, Y. Jin and B. Sun,"Efficient planar heterojunction perovskite solar cells employing graphene oxide as hole conductor," Nanoscale, pp. 10505–10510, 2014.
[26] K. C. Wang, J. Y. Jeng, P. S. Shen, Y.C. Chang, E. W. G. Diau, C.H. Tsai, T.Y. Chao, H.C. Hsu, P.Y. Lin, P. Chen, T.F. Guo and T.C. Wen, "P-type mesoscopic nickel oxide/ organometallic perovskite heterojunction solar cells," Sci. Rep., pp. 47-56, 2014.
[27] C. Zuo and L. Ding, “Solution-Processed Cu2O and CuO as Hole Transport Materials for Efficient Perovskite Solar Cells,” MaterialView, pp. 5528–5532, 2015.
[28] L. C. Chen, C. C. Chen, K. C. Liang, S. H. Chang, Z. L. Tseng, S. C. Yeh, C. T. Chen, W. T. Wu and C. G. Wu, "Nano-structured CuO-Cu2O Complex Thin Film for Application in CH3NH3PbI3 Perovskite Solar Cells," Nanoscale Research Letters, pp.402, 2016.
[29] P. Peumans, V. Bulovic and S. R. Forrest, "Efficient photon harvesting at high optical intensities in ultrathin organic double-heterostructure photovoltaic diodes," Applied Physics Letters, vol. 76, no. 19, pp. 2650–2652, 2000.
[30] J. Jeong, "PHOTOVOLTAICS: Measuring the 'Sun'," 2009. [Online]. Available:
http://www.laserfocusworld.com/articles/2009/05/photovoltaics-measuring-the sun.html.
[31] H. S. Jung and N. G. Park, "Perovskite Solar Cells: From Materials to Devices," Small, pp. 10-25, 2015.
[32] M. A. Green, A. H. Baillie and H. J. Snaith, "The emergence of perovskite solar cells," NATURE PHOTONICS, pp. 506-514, 2014.
[33] K. Fehse, K. Walzer, K. Leo, W. Lövenich, A. Elschner, "Highly conductive polymer anodes as replacements for inorganic materials in high-efficiency organic light emitting diodes," Advanced Materials, vol. 19, no. 3, pp. 441–444, 2007.
[34] B. Qi and J. Wang, "Fill factor in organic solar cells," Phys. Chem. Chem. Phys., pp.8972-8982, 2013.
[35] T. Salim, S. Sun, Y. Abe, A. Krishna, A. C. Grimsdalea and Y. M. Lam, "Perovskite based solar cells: impact of morphology and device architecture on device performance," J. Mater. Chem. A, pp. 8943-8969, 2015.
[36] A. Gul, "ZnO and CuO Nanostructures : Low Temperature Growth , Characterization ,their Optoelectronic and Sensing Applications," 2012.
[37] J. Y. Jeng, Y. F. Chiang, M. H. Lee, S. R. Peng, T. F. Guo, P. Chen and T. C. Wen,"CH3NH3PbI3 perovskite/fullerene planar-heterojunction hybrid solar cells,"Advanced Materials, vol. 25, no. 27, pp. 3727–3732, 2013.
[38] P. Peumans, V. Bulović, and S. R. Forrest, "Efficient, high-bandwidth organic multilayer photodetectors," Applied Physics Letters, vol. 76, no. 26, pp. 3855–3857,2000.
[39] N. J. Jeon, J. H. Noh, Y. C. Kim, W. S. Yang, S. Ryu and S. I. Seok, "Solvent engineering for high-performance inorganic–organic hybrid perovskite solar cells,"Nature Materials, pp. 897-903, 2014.
[40] W. C. Chang, Y. Y. Cheng, W. C. Yu, Y. C. Yao, C. H. Lee and H. H. Ko, "Enhancing performance of ZnO dye-sensitized solar cells by incorporation of multiwalled carbon nanotubes," Nanoscale Research Letters, pp. 166, 2012.
[41] XPSsimplified.com, "Copper", [Online]. Available:
https://xpssimplified.com/elements/copper.php.
[42] N. G. Park, "Perovskite solar cells: an emerging photovoltaic technology,"Materialstoday, pp. 65-72, 2015.
[43] M. Pagliaro, G. Palmisano and R. Ciriminna, Flexible solar cells, New York: John Wiley & Sons, 2008, pp. 37.
[44] T. Ikegami, T. Maezono, F. Nakanishi, Y. Yamagata, K. Ebihara, "Estimation of equivalent circuit parameters of PV module and its application to optimal operation of PV system," Solar Energy Materials & Solar Cells, vol. 67, pp. 389-395, 2001.
[45] K. Fehse, K. Walzer, K. Leo, W. Lövenich and A. Elschner, "PEDOT: Principles and Applications of an Intrinsically Conductive Polymer," Adv. mater., pp. 441-444, 2007.
[46] S. H. Yoo, J. M. Kum and S. O. Cho, "Tuning the electronic band structure of PCBM by electron irradiation," Nanoscale Research Letters, vol. 6, 2011.
[47] W. Cai, X. Gong and Y. Cao, "Polymer solar cells: recent development and possible routes for improvement in the performance," Solar Energy Materials & Solar Cells,
vol. 94, no. 2, pp. 114–127, 2010.
[48] H. Yoshida, "Electron transport in bathocuproine interlayer in organic," The Journal of Physical Chemistry C, vol. 119, no. 43, pp. 24459–24464, 2015.
[49] Wikipedia.org, "Dimethylformamide," [Online]. Available:
https://en.wikipedia.org/wiki/Dimethylformamide.
[50] Wikipedia.org, "Dimethyl sulfoxide," [Online]. Available:
https://en.wikipedia.org/wiki/Dimethyl_sulfoxide.
[51] Wikipedia.org, "Gamma-Butyrolactone," [Online]. Available: https://en.wikipedia.org/wiki/Gamma-Butyrolactone.