研究生: |
吳建輝 Wu, Jian-Huei |
---|---|
論文名稱: |
基於Hammerstein遞迴類神經網路之非線性模式預測控制及其應用 Hammerstein Recurrent Neural Network Based Nonlinear Model Predictive Control and Its Applications |
指導教授: |
王振興
Wang, Jeen-Shing |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
論文出版年: | 2007 |
畢業學年度: | 95 |
語文別: | 中文 |
論文頁數: | 66 |
中文關鍵詞: | 非線性 、模式預測控制 |
外文關鍵詞: | MPC, nonlinear |
相關次數: | 點閱:63 下載:4 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文提出了以Hammerstein遞迴類神經網路(Hammerstein recurrent neural network, HRNN)之非線性預測控制(nonlinear model predictive control, NMPC)的結構來控制未知的系統。首先,我們利用HRNN對未知系統予以模式化,HRNN能將未知的動態系統利用狀態空間來表示之,其中包含了一個靜態非線性的子系統串接著一個動態線性的子系統。之後,我們開發一個有效系統的演算法,結合了維度估測、參數的設定與性能的最佳化等方法,利用此演算法可以建構一個精簡但卻能擁有良好效能的HRNN架構。NMPC的原理是建立一個非線性的消除器,功用等同於在靜態非線性模式的逆轉換器,可以消除未知系統中非線性的作用。假如系統的模式鑑別以及經過逆轉換的非線性模式都是精確的,則由未知系統串接非線性消除器的合成模式,其特性會近似於線性的動態系統模式;因此,線性模式預測控制器設計理論便可直接拿來應用,並且達到良好的控制效能。最後,利用有關非線性系統問題的電腦模擬,成功的證實了此論文所提出之控制架構的有效性。
This thesis presents a nonlinear model predictive control (NMPC) scheme based on a Hammerstein recurrent neural network (HRNN) for controlling unknown systems. The unknown system is first modeled by the HRNN that consists of a static nonlinear subsystem cascaded by a dynamic linear subsystem. The HRNN is capable of transferring an unknown dynamic system into a state-space representation. An effective construction algorithm, which integrates the methods of order determination, parameter initialization and performance optimization, is utilized to construct a parsimonious HRNN with a satisfactory performance. The philosophy of our NMPC scheme system is to establish a nonlinearity eliminator that functions as the inverse of the static nonlinear model to remove the nonlinear behavior of the unknown system. If the system modeling and the inverse of the nonlinear model are accurate, the compound model, the unknown system cascaded with the nonlinearity eliminator, will behave like the linear dynamic model. Hence, the theories of linear model predictive controller design can be applied directly to achieve good control performance. Computer simulations on nonlinear system control problems have successfully validated the effectiveness of the proposed control scheme.
[1] W. H. Kwon and S. Han, Receding horizon control: Model predictive control for state models, Berlin: Springer, 2005.
[2] S. J. Qin and T.A. Badgwell, “A survey of industrial model predictive control technology,” Control Engineering Practice, vol. 11, no. 7, pp. 733-764, July 2003.
[3] S. Piche, B. Sayyar-Rodsari, D. Johnson, and M. Gerules, “Nonlinear model predictive control using neural networks,” IEEE Trans. Control System, vol. 20, pp. 53-62, June 2000.
[4] M. Rau and D. Schroder, “Model predictive control with nonlinear state space models,” Proc. 7th Int’l. Workshop on Advanced Motion Control, pp. 136-141, 2002.
[5] J. B. Rawlings, “Tutorial overview of model predictive control,” IEEE Control Systems
Magazine, vol. 20, no. 3, pp. 38-52, June 2000.
[6] A. Propoi, “Use of linear programming methods for synthesizing sampled-data automatic systems,” Automation and Remote Control, vol. 24, pp. 837-844, 1963.
[7] J. Richalet, A. Rault, J. L. Testud and J. Papon, “Model predictive heuristic control: Applications to industrial process,” Automatica, vol. 14, no. 5, pp. 413-428, September 1978.
[8] C. R. Cutler and B. L. Ramaker, “Dynamic matrix control- A computer control algorithm,” in Automatic Control Conference, San Francisco, CA, Paper WP5-B, 1980.
[9] A. M. Morshedi, C. R. Cutler, and T. A. Skrovanek, “Optimal solution of dynamic matrix control with linear programming techniques (LDMC),” Proc. American Control Conference, pp. 199-208, 1985.
[10] C. E. Garcia and A. M. Morshedi, “Quadratic programming solution of dynamic matrix control (QDMC),” Chemical Engineering Communications, vol. 46, pp. 73-87, 1986.
[11] P. Grosdidier, B. Froisy and M. Hammann, “The IDCOM-M controller,” Proc. 1988 IFAC Workshop Model Based Process Control, pp. 31-36, 1988.
[12] P. Marquis and J. P. Broustail, “SMOC, a bridge between state space and model predictive controllers: Application to the automation of a hydro-treating unit,” Proc. 1988 IFAC Workshop Model Based Process Control, pp. 37-43, 1988.
[13] B. E. Ydstie, “Extended horizon adaptive control,” Proc. IFAC 9th Series, 1985, pp. 911-915.
[14] R. M. C. De Keyser and A. R. Van Cauwenberghe, “Extended prediction self-adaptive control,” Proc. IFAC 7th Series, no. 7, 1985, pp.1255-1260.
[15] D. W. Clarke, C. Mohtadi and P. S. Tuffs, “Generalized predictive control-Part I: The basic algorithm,” Automatica, vol. 23, no. 2, pp. 137-148, March 1987.
[16] J. Richelet, S. Abu-el Ata-Doss, C. Arber, H. B. Kuntze, A. Jacubash and W. Schill, “Predictive functional control: Application to fast and accurate robots,” Proc. IFAC 10th World Congress, Munich, pp. 251-258, 1987.
[17] E. F. Camacho and C. Bordons, Model predictive control, Edoardo Mosca: Springer, 1999.
[18] R. Soeterboek, Predictive control: A unified approach, Prentice-Hall, 1992.
[19] A. A. Patwardhan, J. B. Rawlings, and T. F. Edgar, “Nonlinear model predictive control,” Chemical Engineering Communications, vol. 87, pp. 123-141, 1990.
[20] Q. M. Zhu, K. Warwick, and J. L. Douce, “Adaptive general predictive controller for nonlinear systems,” IEE Proceedings, Part D: Control Theory and Applications, vol. 138, no. 1, pp. 33-40, January 1991.
[21] G. P. Liu, V. Kadirkamanathan, and S. A. Billings, “Predictive control for nonlinear systems using neural networks,” Int’l. Journal of Control, vol. 71, no. 6, pp. 1119-1132, December 1998.
[22] C. -L. Chen, P. -C. Chen, and C. -K. Chen, “Application of fuzzy adaptive controller in nonlinear process control,” Chemical Engineering Communications, vol. 123, pp. 111-126, 1993.
[23] S. Sommer,” Model-based predictive control methods based on nonlinear and bilinear parametric system descriptions,” Advances in Model-Based Predictive Control, pp. 192-204, 1994.
[24] J. Gangloff, R. Ginhoux, M. de Mathlin, L. Soler, and J. Marescaux, ”Model predictive control for compensation of cyclic organ motions in teleoperated laparoscopic surgery,” IEEE Trans. Control Systems Technique, vol. 14, pp. 235-246, March 2006.
[25] M. Nikolaou, “Model predictive controllers: A critical synthesis of theory and industrial needs,” Advances in Chemical Engineering series, Academic Press, pp. 1-50, 1998.
[26] J. -S. Wang and Y. -P. Chen, “A fully automated recurrent neural network for unknown dynamic system identification and control,” IEEE Trans. Circuits and System 1: Regular Papers, vol. 53, no. 6, pp. 1363-1372, June 2006.
[27] P. B. Sistu and B. W. Bequette, “Nonlinear predictive control of uncertain process: Application to a CSTR,” AIChE Journal, vol. 37, no. 11, pp. 1711-1723, November 1991.
[28] S. Mollov, R. Babuska, J. Abonyi, and H. B. Verbruggen, “Effective optimization for fuzzy model predictive control,” IEEE Trans. on Fuzzy Systems, vol. 12, no. 5, pp. 661-675, October 2004.
[29] G. H. C. Oliveria, W. C. Amaral and K. Latawiec, “CRHPC using Volterra models and orthonormal basis function: An application, Proc. IEEE Conference Control Applications, vol. 1, pp. 718-723, 2003.
[30] L. Jia and J. -S. Yu, “Nonlinear hybrid adaptive inverse control using neural fuzzy system and its application to CSTR systems,” Proc. World Congress Intelligent Control and Automation, vol. 3, pp. 1896-1900, 2002.
[31] Z. -Y. Zou, D. -H. Yu, Z. Hu, L. -P. Yu, W. -Q. Feng, and N. Guo, “Design and simulation of nonlinear Hammerstein systems dynamic matrix control algorithm,” Proc. World Congress Intelligent Control and Automation, pp. 1981-1985, 2006.
[32] P. Guo, “Nonlinear predictive functional control based on hopfield network and its application in CSTR,” Proc. 2006 Int’l. Conference on Machine Learning and Cybernetics, pp. 3036-3039, 2006.
[33] C. -T. Lin, C. -F. Juang, and C. -P. Li, “Temperature control with a neural fuzzy inference network,” IEEE Trans. Systems, Man and Cybernetics Part C: Applications and Reviews, vol. 29, no. 3, pp. 440-40, August 1999.
[34] J. Tanomaru and S. Omatu, “Process control by on-line trained neural controllers,” IEEE Trans. Industrial Electronics, vol. 39, no. 6, pp. 511-521, December 1992.
[35] E. Eskinat, S. H. Johnson, and W. L. Luyben, “Use of Hammerstein models in identification of nonlinear systems,” AIChE Journal, vol. 37, no. 2, pp. 255-268,
February 1991.
[36] M. Khalid and S. Omatu, “A neural network controller for a temperature control system,”IEEE Control Systems Magazine, vol. 12, no. 3, pp. 58-64, June 1992.
[37] D. K. Rollins, N. Bhandari, A. M. Bassily, G. M. Colver, and S. T. Chin, ”A continuous time nonlinear dynamic predictive modeling method for Hammerstein process,” Industrial and Engineering Chemistry Research, vol. 42, no. 4, pp. 860-872, February 2003.
[38] J. A. Rossiter, Model-based predictive control: A practical approach, Boca Raton: CRC Press, 2003.
[39] K. R. Muske and J. B. Rawlings, “Model predictive control with linear models,” AIChE Journal, vol. 39, no. 2, pp. 262-287, February 1993.
[40] J. A. Mendez, B. Kouvaritakis, and J. A. Rossiter, “State-space approach to interpolation in MPC,” Int’l. Journal of Robust and Nonlinear Control, vol. 10, no. 1, pp.27-38, January 2000.
[41] D. D. Ruscio, “Model predictive control and identification: A linear state space model approach,” Proc. IEEE Conference Decision and Control, vol. 4, pp. 3202-3209, 1997.
[42] B. Kouvaritakis, W. Wang and Y. I. Lee, “Observers in nonlinear model-based predictive control,” Int’l. Journal of Robust and Nonlinear Control, vol. 10, no. 10, pp. 749-761, August 2000.
[43] R. Findeisen and F. Allgower, “An introduction to nonlinear model predictive control,” in Dutch Institute of Systems and Control, pp. 3.1-3.45, 2000.
[44] R. Findeisen and F. Allgower, “The quasi-infinite horizon approach to nonlinear model predictive control,” Nonlinear and Adaptive Control, Berlin: Springer-Verlag, pp.89-105, 2002.
[45] W. -H. Chen, D. J. Balance, and J. O’Reilly, “Model predictive control of nonlinear systems: Computational burden and stability,” IEE Proceedings: Control Theory and Applications, vol. 147, pp. 387-394, July 2000.
[46] H. H. J. Bloemen, T. J. J. van den Boom and H. B. Verbruggen, ”Model-based predictive control for Hammerstein systems,” Proc. IEEE Conference Decision and Control, vol. 5, pp. 4963-4968, 2000.
[47] R. S. Patwardhan, S. Lakshminarayanan, and S. L. Shah, “Constrained nonlinear MPC using Hammerstein and Weiner models: PLS framework,” AIChE Journal, vol. 44, no. 7, pp. 1611-1622, July 1998.
[48] N. Wasif and H. Al-Duwaish, “Nonlinear model predictive control of Hammerstein and Weiner models using genetic algorithms,” Proc. IEEE Conference Control Applications, pp. 465-469, 2001.
[49] S. Chinvorarat and M. P. Schoen, “Disturbance rejection in setpoint tracking adaptive predictive controller design,” Proc. American Control Conference, vol. 5, pp. 4027-4032, 2002.
[50] P. -H. Hu and P. Yuan, “Disturbance decoupling problem of state feedback model predictive control,” Proc. World Congress Intelligent Control and Automation, vol. 1, pp. 316-320, 2002.
[51] W. A. Wolovich, “Multivariable system synthesis with step disturbance rejection,”IEEE Trans. Automatic Control, vol. AC-19, no. 2, pp. 127-130, April 1974.
[52] F. Jurado, “Hammerstein-model-based predictive control of micro-turbines,” Int’l. Journal of Energy Research, vol. 30, no. 7, pp. 511-521, June 2006.
[53] R. Findeisen, L. Imsland, F. Allogower and B. A. Foss, ”State and output feedback nonlinear model predictive control: An overview,” European Journal of Control, vol. 19, no. 2-3, pp. 190-206, 2003.
[54] N. Bhat and T. J. McAvoy, “Use of neural nets for dynamic modeling and control of chemical process systems,” Computer and Chemical Engineering, vol. 14, no. 4-5, pp. 573-583, April-May 1990.
[55] E. Hernandez and Y. Arkun, “Control of nonlinear systems using polynomial ARMA models,” AIChE Journal, vol. 39, no. 3, pp. 446-460, March 1993.
[56] X. Zhu and D. E. Seborg, “Nonlinear model predictive control based on Hammerstein models,” Proc. 5th Int’l. Symposium Process Systems Engineering, pp. 995-1000, 1994.
[57] K. -H. Chan and J. Bao, “Model predictive control of Hammerstein systems with multivariable nonlinearities,” Industrial and Engineering Chemistry Research, vol. 46, no. 1, pp. 168-180, January 2007.
[58] P. B. sistu and B. W. Bequette, “Nonlinear model-predictive control: Closed-loop stability analysis,” AIChE Journal, vol. 42, no. 12, pp. 3388-3402, December 1996.
[59] J. -S. Wang and Y. -P. Chen, “An ad hoc control approach using a fully automated recurrent neural network for unknown nonlinear systems (Unpublished work style),” unpublished.
[60] J. B. Rawlings and K. R. Muske, “Stability of constrained receding horizon control,” IEEE Trans. Automatic Control, vol. 38, no. 10, pp. 1512-1516, October 1993.
[61] E. S. Meadows, M. A. Henson, J. W. Eaton, and J. B. Rawlings, “Receding horizon control and discontinuous state feedback stabilization,” Int’l. Journal of Control, vol. 62, no. 5, pp. 1217-1229, November 1995.
[62] N. M. C. De Oliveira and L. T. Biegler, “An extension of Newton-type algorithms for nonlinear process control,” Automatica, vol. 31, no. 2, pp. 281-286, February 1995.
[63] W. C. Li and L. T. Biegler, “Multi-step, Newton-type control strategies for constrained, nonlinear processes,” Chemical Engineering Research and Design, vol. 67, no. 6, pp. 562-577, November 1989.