| 研究生: |
李璇 Lee, Hsuan |
|---|---|
| 論文名稱: |
整合SURF與BRISK實現居家服務型機器人之即時物件辨識系統 Implementation of Real-time Object Recognition System by Integrating SURF and BRISK for Home-Service Robot |
| 指導教授: |
李祖聖
Li, Tzuu-Hseng |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2013 |
| 畢業學年度: | 101 |
| 語文別: | 英文 |
| 論文頁數: | 81 |
| 中文關鍵詞: | 物件辨識 、視覺感知 、居家服務型機器人 |
| 外文關鍵詞: | Object Recognition, Visual Perception, Home-Service Robot |
| 相關次數: | 點閱:132 下載:4 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文主要在探討居家服務型機器人之物件辨識系統與視覺感知功能的設計與實現。首先介紹結合CUDA SURF特徵點偵測法和BRISK特徵點描述法來實現的物件辨識系統,其中CUDA SURF是利用GPU平行化處理來加快原始SURF的速度,而BRISK與傳統的特徵描述法不同,採用了二進位字串而非浮點數來記錄特徵值,這樣的方法不但減少了容量的消耗,同時也加快了比對結果的速度。針對尋找不在資料庫內的物品,我們提出了一種視覺感知系統,首先從彩色影像中偵測邊緣,接著計算該邊緣附近的深度資訊,來產生其是否為物體邊界的機率,再找出物體的輪廓。本實驗室研究開發的人機介面包含兩個部分,針對開發者,介面應設計的簡潔易懂;對於使用者,語音辨識及手勢辨識系統的設計,使其能夠輕鬆地傳達指令或是取得機器人的注意。最後,將以上所提出的方法應用於居家服務型機器人,並透過實驗室的實驗結果與2013 RoboCup@Home日本公開賽的比賽成果證明該即時物件辨識系統其可行性與實用性。
This thesis mainly discusses the design and implementation of object recognition and visual perception for home service robot. In the beginning, the object recognition system built by combining Compute Unified Device Architecture (CUDA) Speeded Up Robust Features (SURF) detector and Binary Robust Invariant Scalable Keypoints (BRISK) descriptor is presented. CUDA SURF improves the speed of original SURF through Graphic Processing Unit (GPU) parallelization. Unlike traditional descriptors, BRISK uses the binary string instead of floating vector to store the description. It not only decreases the consumption on memory but also reduces the computation time for matching. Next, we propose a visual perception system for searching objects, which are not included in database. By calculating the depth difference between two sides of an edge, a probability weight is generated to evaluate whether it is a boundary or not. The contours of objects are searched according to the probability. Then, the Human-Computer Interaction (HCI) is introduced in two ways: for developers, these interfaces should be clear and easy to understand, and for operators, the designs of speech recognition system and gesture recognition system make it convenient to convey instruction or get the attention from robot. In the end, these methods mentioned above are implemented in the laboratory and the competition in robot@home league at RoboCup Japan Open 2013 Tokyo, and the validity and practicability of this real-time object recognition system are demonstrated.
[1] Y. Sakagami, R. Watanabe, C. Aoyama, S. Matsunaga, N. Higaki, and K. Fujimura, “The intelligent ASIMO: System overview and integration,” in Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, vol. 3, pp. 2478–2483, 2002.
[2] HONDA ASIMO [Online], Available: http://world.honda.com/ASIMO/
[3] PR2 [Online], Available: https://www.willowgarage.com/pages/pr2/overview
[4] J. Bohren, R. B. Rusu, E. G. Jones, E. Marder-Eppstein, C. Pantofaru, M. Wise, L. Mo¨senlechner, W. Meeussen, and S. Holzer, “Towards autonomous robotic butlers: Lessons learned with the PR2,” in Proceedings of the IEEE International Conference on Robotics and Automation, pp. 5568–5575, 2011.
[5] B.-J. You, M. Hwangbo, S.-O. Lee, S.-R. Oh, Y. D. Kwon, and S. Lim, “Development of a home service Robot ‘ISSAC’,” in Proceedings of the International Conference on Intelligent Robots and System, vol. 3, pp. 2630–2635, 2003.
[6] R. B. Rusu, N. Blodow, Z. C. Marton and M. Beetz, “Close-range Scene Segmentation and Reconstruction of 3D Point Cloud Maps for Mobile Manipulation in Domestic Environment,” in Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 1–6, 2009.
[7] P. Chumtong, Y. Mae, T. Takubo, K. Ohara and T. Arai, “Vision-based Object Search in Unknown Human Environment using Object Co-occurrence Graph,” in Proceedings of the IEEE International Conference on Robotics and Biomimetics, pp. 2043–2048, 2011.
[8] A. Aydemir, K. Sjo¨o, J. Folkesson, A. Pronobis, and P. Jensfelt, “Search in the real world: Active visual object search based on spatial relations,” in Proceedings of the IEEE International Conference on Robotics and Automation, pp. 2818–2824, 2011.
[9] D. G. Lowe, “Distinctive Image Features from Scale-Invariant Keypoints,” International Journal of Computer Vision, Vol. 60, No. 2, pp. 91–110, 2004.
[10] H. Bay, T. Tuytelaars, and L. V. Gool, “SURF: Speeded-Up Robust Features,” in Proceedings of the European Conference on Computer Vision, pp. 404–417, 2006.
[11] E. Rosten and T. Drummond, “Faster and Better: A Machine Learning Approach to Corner Detection,” IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 32, No. 1, pp.105–119, 2010.
[12] M. Calonder, V. Lepetit, C. Strecha, and P. Fua, “BRIEF: Binary Robust Independent Elementary Features,” in Proceedings of the European Conference on Computer Vision (ECCV), pp.778–792, 2010.
[13] S. Leutenegger, M. Chli, and R. Siegwart, “BRISK: Binary robust invariant scalable keypoints,” in Proceedings of the IEEE International Conference on Computer Vision, pp. 2548–2555, 2011.
[14] A. Alahi, R. Ortiz, and P. Vandergheynst, “Freak: Fast retina keypoint,” in Proceedings of the IEEE International Conference on Computer Vision and Pattern Recognition (CVPR), pp. 510–517, 2012.
[15] H.-E. Cheng, OpenGL Based Affine SIFT Real-time Image Processing Method for Home Service Robots: Master Thesis, National Cheng Kung University, 2012.
[16] NVidia [Online], Available: http://www.nvidia.com.tw/page/home.html
[17] SICK [Online], Available: http://www.sick.com.tw/marathon-LMS100.html
[18] RODE [Online], Available: http://www.rodemic.com/mics/videomicpro
[19] Robotis [Online], Available: http://www.robotis.com/xe/dynamixel_en
[20] FUJITSU [Online], Available: http://www.fujitsu.com/tw/services/computer/notebooks/LLseries/lh772/
[21] GeFORCE [Online], Available: http://www.geforce.com.tw/hardware/notebook-gpus/geforce-gt-640m-le/specifications
[22] P. A. Viola and M.J. Jones, “Rapid object detection using a boosted cascade of simple features,” in Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Vol. 1, pp. 511–518, 2001.
[23] C. Harris and M. Stephens, “A combined corner and edge detector,” in Proceedings of the Alvey Vision Conference, pp. 147–151, 1988.
[24] T.B. Terriberry, L.M. French, and J. Helmsen, “GPU Accelerating Speeded-Up Robust Features,” in Proceedings of the 4th International Symposium on 3D Data Processing, Visualization and Transmission, pp. 355–362, 2008.
[25] M. Brown and D. Lowe, “Invariant features from interest point groups,” in British Machine Vision Conference, pp. 656–665, 2002.
[26] Y. Ke and R. Sukthankar, “PCA-SIFT: A more distinctive representation for local image descriptors, ” in Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Vol. 2, pp. 506–513, 2004.
[27] N. Zhang, “Computing Optimized Parallel Speeded-Up Robust Features (P-SURF) on Multi-Core Processors,” International Journal of Parallel Programming, Vol. 38, pp.138–158, 2010.
[28] N. Cornelis and L. V. Gool, “Fast scale invariant feature detection and matching on programmable graphics hardware,” in Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops, pp. 1–8, 2008.
[29] P. Furgale, C. Tong, and G. Kenway, “ECE1724 Project Speeded-Up Speeded-Up Robust Features,” in ECE1724 Project Report, 2009.
[30] CUDA SURF [Online], Available: http://www.d2.mpi-inf.mpg.de/surf
[31] J. Canny, “A Computational Approach to Edge Detection,” IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 8, pp.679–698, 1986.
[32] A.K. Mishra, A. Shrivastava, and Y. Aloimonos, “Segmenting “Simple” Objects Using RGB-D,” in Proceedings of International Conference on Robotics and Automation, pp. 4406–44123, 2012.
[33] A.K. Mishra, Y. Aloimonos, Loong-Fah Cheong, and A.A. Kassim, “Active Visual Segmentation,” IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 34, No. 4, pp.639–653, 2012.
[34] XBOX360 Wireless Controller [Online], Available: http://www.microsoft.com/hardware/zh-hk/p/xbox-360-wireless-controller-for-windows#details
[35] P. E. Hart, N. J. Nilsson, B. Raphael, ”A Formal Basis for the Heuristic Determination of Minimum Cost Paths,” IEEE Transactions on Systems Science and Cybernetics, Vol. 4, pp. 100–107, 1968.
[36] Kinect for Windows Sensor Components and Specifications [Online], available: http://msdn.microsoft.com/en-us/library/jj131033
[37] Kinect for XBOX 360 [Online], Available:
http://www.microsoftstore.com/store/msusa/en_US/pdp/productID.253169000
[38] P. Viola and M. Jones, “Robust Real-time Object Detection,” International Journal of Computer Vision, Vol. 57, No. 1, pp. 137–154, 2001.
[39] Face Recognition [Online], Available: http://www.shervinemami.info/faceRecognition.html
[40] H. Freeman and R. Shapira, “Determining the minimum-area encasing rectangle for an arbitrary closed curve,” Communications of the ACM, Vol. 18, pp. 409–413, 1975.
[41] A. Telea, “An image inpainting technique based on the fast marching method,” Journal of Graphics Tools, Vol. 9, No. 1, pp. 23–34, 2004.
[42] Z. Kalal, J. Matas, and K. Mikolajczyk, “Online learning of robust object detectors during unstable tracking,” in Proceedings of International Conference Computer Vision Workshops On-Line Learning and Computer Vision, pp. 1417–1424, 2009.
[43] Microsoft Speech Platform [Online], Available: http://msdn.microsoft.com/en-us/library/hh361572