| 研究生: |
李余耀 Lee, Yu-Yao |
|---|---|
| 論文名稱: |
自調式的時延系統控制及容錯控制 Self-Tuning Time-Delayed System Control and Fault Tolerant Control |
| 指導教授: |
蔡聖鴻
Tsai, Sheng-Hong Jason |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2006 |
| 畢業學年度: | 94 |
| 語文別: | 英文 |
| 論文頁數: | 85 |
| 中文關鍵詞: | 時延系統 、自我調整控制器 、容錯控制 |
| 外文關鍵詞: | self-tuning control, time-delayed system, fault tolerant control |
| 相關次數: | 點閱:100 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文旨在應用自我調整控制器做多變數時延系統的控制以及容錯控制。本文利用狀態空間自我調整控制器方法,對於輸入和系統有非同時延時的複雜的系統,可以自我調整出線性控制器加以有效控制。在被控系統的系統參數未知、系統和量測雜訊也未知、系統狀態不能直接取得的狀況下,本文推導其存在的等效線性非時延模型,此等效的線性非時延模型可以由自我調整控制器的系統參數估測過程中得之,因而線性控制器和觀測器可據以設計。這種方式,可以大大地簡化針對複雜被控系統的追蹤控制器設計。此外,本文將自我調整控制器加以修改,發展出一種對未知多變數隨機系統的容錯控制法。當被控系統有故障發生時,經由比較卡爾曼濾波器參數估測演算法的更新過程誤差,可以在自我調整控制器結構中做故障檢測,並且,經由重設卡爾曼濾波器估測演算法的估測參數的協方差矩陣,改善故障系統的參數估測,發展出加權矩陣重設法則,可用以做故障系統控制復原。此方法可以有效地復原當系統有突發性或逐漸性部份故障,以及控制輸入有突發性或逐漸性部份故障的容錯控制系統。
This dissertation is dedicated to develop the self-tuning control for some time-delayed systems and the fault tolerant control. Based on the state-space self-tuning control methodology, a complex stochastic system with input and state delays and deterministic disturbances can be controlled. In this approach, an equivalent delay-free linear model is obtained for the concerned system, which may have unknown system parameters, system and measurement noises, and inaccessible system states. The equivalent delay-free linear model is obtained in the estimating process of the self-tuning control loop, and then a linear controller and an observer are designed. The proposed method significantly simplifies the design and the implementation procedures of the tracker. Besides, by modifying the conventional self-tuning control, fault tolerant control schemes for unknown multivariable stochastic systems are also developed. For the detection of fault occurrence, a quantitative criterion is developed by comparing the innovation process errors occurring in the Kalman filter estimation algorithm. Also, for control recoveries of faulty systems, a weighting matrix resetting methodology is developed by adjusting and resetting the covariance matrices of parameter estimate obtained in the Kalman filter estimation algorithm to improve the parameter estimation of the faulty systems. The proposed method can effectively cope with partially abrupt and/or gradual system faults and/or input failures with fault detection.
[1] Astrom, K. J. and Wittenmark, B., Adaptive Control, Addison Wesley, 1995.
[2] Ljung, L., System Identification Theory for the User 2nd, Prentice-Hall,
N.J., 1999.
[3] Lewis, F. L. and Syrmos, V. L., Optimal Control, Wiley, N.Y., 1995.
[4] Fiagbedzi, Y. A. and Pearson, A. E., “Feedback stabilization of linear
autonomous time lag systems,” IEEE Transactions on Automatic Control,
vol. 31, pp. 847-855, 1986.
[5] Bodson, M. and Groszkiewicz, J. E., “Multivariable adaptive algorithms
for reconfigurable flight control,” IEEE Transactions on Control System
Technology, vol. 5, no. 2, pp. 217-229, 1997.
[6] Moseler, O. and Isermann, R., “Application of model-based fault
detection to a brushless DC motor,” IEEE Transactions on Industrial
Electronics, vol. 47, no. 5, pp. 1015-1020, 2000.
[7] Omerdic, E. and Roberts, G., “Thruster fault diagnosis and accommodation
for open-frame underwater vehicles,” Control Engineering Practice, vol.
12, pp. 1575-1598, 2004.
[8] Visinsky, M. L., Cavallaro, J. R. and Walker, I. D., “A dynamic fault
tolerance framework for remote robots,” IEEE Transactions on Robotics
and Automation, vol. 11, no. 4, pp. 477-490, 1995.
[9] Yen, G. and Ho, L. W., “Online multiple-model-based fault diagnosis and
accommodation,” IEEE Transactions on Industrial Electronics, vol. 50,
pp. 296-312, 2003.
[10] Guo, S. M., Shieh, L. S., Chen, G., Lin, C. F. and Chandra, J., “State-
space self-tuning control for nonlinear stochastic and chaotic hybrid
system,” International Journal of Bifurcation Chaos, vol. 11, pp. 1079-
1113, 2001.
[11] Chowdhury, F. N., “Input-output modeling of nonlinear systems with time-
varying linear models,” IEEE Transactions on Automatic Control, vol.
45, pp. 1355-1358, 2000.
[12] Shieh, L. S. and Tsay, Y. T., “Transformations of a class of
multivariable control system to block companion forms,” IEEE
Transactions on Automatic Control, vol. 27, pp. 199-203, 1982.
[13] Soderstorm, T. and Stoica, P., System Identification, Prentice-Hall,
N.Y., 1989.
[14] Teixeria, M. C. M. and Zak, S. H., “Stabilizing controller design for
uncertain nonlinear system using fuzzy models,” IEEE Transactions on
Fuzzy Systems, 7, vol. 7 pp.133-142, 1999.
[15] Lu, J., Chen, G., Zhang, S. and Celikovsky, S., “Bridge the gap between
the Lorenz system and the Chen system,” International Journal of
Bifurcation and Chaos, vol. 12, pp. 2917-2926, 2002.
[16] Chen, G. and Dong, X., From Chaos to Order: Perspectives, Methodologies,
and Applications, Singapore: World Scientific, 1998.
[17] Chen, G. and Ueta, T., “Yet another chaotic attractor,” International
Journal of Bifurcation Chaos, vol. 9, pp. 1465-1466, 1999.
[18] Zhong, G. Q. and Tang, W. K. S., “Circuit implementation and
synchronization of Chen’s attractor,” International Journal of
Bifurcation Chaos, vol. 12, pp. 1423-1427, 2002.
[19] Chen, G. and Dong, X., “Controlling Chua’s circuit,” Journal of
Circuits, Systems and Computers, vol. 3, pp. 139-149, 1993.
[20] Chen, G. and Dong, X., “On feedback control of chaotic continuous-time
system,” IEEE Transactions on Circuits and Systems—I, Fundamental
Theory and Applications, vol. 40, pp. 591-601, 1993.
[21] Chen, G. and Ogorzalek, M. J., “Theme issue on chaos control and
synchronization,” International Journal of Bifurcation Chaos, vol. 10,
pp. 128-130, 2000.
[22] Phoojaruenchanachai, S., Uahchinkui, K. and Prempraneerach, Y., “Robust
stabilization of a state delayed system,” IEE Proceedings Control
Theory and Applications, vol. 145, pp. 87-90, 1998.
[23] Manitius, A., Tran, H., Payre, G. and Roy, R., “Computation of
eigenvalues associated with functional differential equations,” SIAM
Journal of Sciences, Statistics and Computations, vol. 8, pp. 222-247,
1987.
[24] Orlov, Y., Belkoura, L., Richard, J. P. and Dembrine, M., “On
identifiability of linear time-delay systems,” IEEE Transactions on
Automatic Control, vol. 47, pp. 1319-1324, 2002.
[25] Fujita, M. and Shimemura, E., “Integrity against arbitrary feedback-
loop failure in linear multivariable control system,” Automatica, vol.
24, pp. 765-772, 1988.
[26] Yang, Y., Yang, G. H. and Soh, Y. C., “Reliable control of discrete-
time systems with actuator failure,” IEE Proceedings Control Theory and
Applications, vol. 147, pp. 428-432, 2000.
[27] Khosrowjerdi, M. J., Nikoukhah, R. and Safari-shad, N., “A mixed
approach to simultaneous fault detection and control,” Automatica, vol.
40, pp. 261-267, 2004.
[28] Jiang, J., “Design of reconfigurable control systems using
eigenstructure assignment,” International Journal of Control, vol. 59
(2), pp. 395-410, 1994.
[29] Wang, H. and Wang, Y., “Neural-network-based fault-tolerant control of
unknown nonlinear systems,” IEE Proceedings Control Theory and
Applications, vol. 146 (5), pp. 389-398, 1999.
[30] Zhang, X. D., Parisini, T. and Marios, M. P., “Adaptive fault-tolerant
control of nonlinear uncertain systems: an information-based diagnostic
approach,” IEEE Transactions on Automatic Control, vol. 49, pp. 1259-
1274, 2004.
[31] Zhang, Y. M. and Jiang, J., “Active fault-tolerant control system
against partial actuator failures,” IEE Proceedings Control Theory and
Applications, vol.146, pp. 95-104, 2002.
[32] Yu Ding-Li, Chang, T. K. and Yu, Ding-Wen, “Fault tolerant control of
multivariable processes using auto-tuning PID controller,” IEEE
Transactions on System, Man., and Cybernetics-Part B: Cybernetics, vol.
35, no. 1, pp. 32-43, 2005.
[33] Gawthrop, P. J., “Self-tuning PID controller: algorithms and
implementation,” IEEE Trans. Automatic Control, vol. 31, no. 3, pp. 201-
209, Mar. 1986.
[34] Radke, F. and Isermann, R., “A parameter adaptive PID controller with
stepwise parameter optimization,” Automatica, vol. 23, no. 4, pp. 449-
457, 1987.
[35] Lee, T. H., Hang, C. C., Ho, W. K. and Yue, P. K., “Implementation of a
knowledge-based PID auto-tuner”, Automatica, vol. 29, no. 4, pp. 1107-
1113, 1993.
[36] Ruano, A. E. B., Fleming, P. J. and Jones, D. I., “Connectionist
approach to PID auto-tuning,” Instit. Elect. Eng.-Proc. Part D: Control
Theory Applications, vol. 139, no. 3, pp. 279-285, 1992.
[37] Pentinnen, J. and Koivo, H. N., “Multivariable tuning regulators for
unknown systems,” Automatica, vol. 16, pp. 393-398, 1980.
[38] Davison E. J., “Multivariable tuning regulators: the feedforward and
robust control of general servomechanism problem,” IEEE Transactions on
Automatic Control, vol. 21, no. 1, pp. 35-47, Feb. 1976.
[39] Zgorzelski, P., Unbehauen, H. and Niederlinski, A., “A new simple
decentralized adaptive multivariable regulator and its application to
multivariable plants,” in Proc. 11th IFAC World Congress, Tallin,
Estonia, pp. 226-231, 1990.
[40] Loh, A. P., Hang, C. C., Quek, C. K. and Vasnani, V. U., “Auto-tuning
of multi-loop proportional-integral controllers using relay feedback,”
Ind. Eng. Chem. Proc. Des. Dev., vol. 25, pp. 654-660, 1993.
[41] Zhuang, M. and Atherton, D. P., “PID controller design for a TITO
system,” Inst. Elect. Eng.-Proc. Pt. D: Control Theory Applications,
Vol. 141, pp. 111-120, 1994.
[42] Astrom, K. J. and Hagglund, T., “Automatic tuning of simple regulars
with specifications on phase and amplitude margins,” Automatica, vol.
20, pp. 645-651, 1984.
[43] Koivo, H. N. and Tanttu, J. T., “Tuning of PID controller-survey of
SISO and MIMO”, in Proc. Preprints IFAC Int. Symposium Intelligent
Tuning Adaptive Control, Singapore, 1991.
[44] Driver, R. D., Ordinary and Delay Differential Equations, New York:
Springer-Verlag, 1977.