簡易檢索 / 詳目顯示

研究生: 李余耀
Lee, Yu-Yao
論文名稱: 自調式的時延系統控制及容錯控制
Self-Tuning Time-Delayed System Control and Fault Tolerant Control
指導教授: 蔡聖鴻
Tsai, Sheng-Hong Jason
學位類別: 博士
Doctor
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2006
畢業學年度: 94
語文別: 英文
論文頁數: 85
中文關鍵詞: 時延系統自我調整控制器容錯控制
外文關鍵詞: self-tuning control, time-delayed system, fault tolerant control
相關次數: 點閱:100下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   本論文旨在應用自我調整控制器做多變數時延系統的控制以及容錯控制。本文利用狀態空間自我調整控制器方法,對於輸入和系統有非同時延時的複雜的系統,可以自我調整出線性控制器加以有效控制。在被控系統的系統參數未知、系統和量測雜訊也未知、系統狀態不能直接取得的狀況下,本文推導其存在的等效線性非時延模型,此等效的線性非時延模型可以由自我調整控制器的系統參數估測過程中得之,因而線性控制器和觀測器可據以設計。這種方式,可以大大地簡化針對複雜被控系統的追蹤控制器設計。此外,本文將自我調整控制器加以修改,發展出一種對未知多變數隨機系統的容錯控制法。當被控系統有故障發生時,經由比較卡爾曼濾波器參數估測演算法的更新過程誤差,可以在自我調整控制器結構中做故障檢測,並且,經由重設卡爾曼濾波器估測演算法的估測參數的協方差矩陣,改善故障系統的參數估測,發展出加權矩陣重設法則,可用以做故障系統控制復原。此方法可以有效地復原當系統有突發性或逐漸性部份故障,以及控制輸入有突發性或逐漸性部份故障的容錯控制系統。

      This dissertation is dedicated to develop the self-tuning control for some time-delayed systems and the fault tolerant control. Based on the state-space self-tuning control methodology, a complex stochastic system with input and state delays and deterministic disturbances can be controlled. In this approach, an equivalent delay-free linear model is obtained for the concerned system, which may have unknown system parameters, system and measurement noises, and inaccessible system states. The equivalent delay-free linear model is obtained in the estimating process of the self-tuning control loop, and then a linear controller and an observer are designed. The proposed method significantly simplifies the design and the implementation procedures of the tracker. Besides, by modifying the conventional self-tuning control, fault tolerant control schemes for unknown multivariable stochastic systems are also developed. For the detection of fault occurrence, a quantitative criterion is developed by comparing the innovation process errors occurring in the Kalman filter estimation algorithm. Also, for control recoveries of faulty systems, a weighting matrix resetting methodology is developed by adjusting and resetting the covariance matrices of parameter estimate obtained in the Kalman filter estimation algorithm to improve the parameter estimation of the faulty systems. The proposed method can effectively cope with partially abrupt and/or gradual system faults and/or input failures with fault detection.

    摘要                                    i Abstract                                  ii Acknowledgement                              iii Contents                                  iv List of Figures                               vi Symbols and Abbreviations                         viii Chapter 1 Introduction                            1 1.1 Self-tuning control                           1 1.2 Self-tuning control for multivariable noncommensurate-delayed systems  2 1.3 Self-tuning fault-tolerant control                   3 1.4 Organization of the dissertation                    3 Chapter 2 State-Space Self-Tuning Control of Stochastic Systems       5 2.1 Introduction                              5 2.2 Self-tuning control for linear time-invariant system          8 2.3 Self-tuning control for nonlinear system                14 2.4 Initialization of self-tuning control                 15 2.5 An illustrative example                        16 2.6 Summary                                22 Chapter 3 State-Space Self-Tuning Control for Stochastic Chaotic System with Delays and Disturbances                           23 3.1 Introduction                              23 3.2 Linear systems with commensurate delays                24 3.3 Linear systems with noncommensurate delays               26 3.4 Observer-based tracker for linear/chaotic stochastic systems with delays                                       27 3.5 Illustrative examples                         27 3.6 Summary                                35 Chapter 4 State-Space Self-Tuning Control for Active Fault Tolerant Control                                       36 4.1 Introduction                              36 4.2 Problem statement                           38 4.3 Self-tuning control with fault tolerance                39 4.4 Illustrative examples                         43 4.5 Summary                                55 Chapter 5 Active Fault Tolerant Control Using Auto-Tuning PID Controller Based on ARMAX Model                  56 5.1 Introduction                              56 5.2 Fault tolerant control scheme using auto-tuning PID controller     58 5.3 Auto-tuning PID algorithm                       60 5.4 Illustrative examples                         64 5.5 Summary                                78 Chapter 6 Conclusions                           79 References                                 81 Biography                                   85

    [1] Astrom, K. J. and Wittenmark, B., Adaptive Control, Addison Wesley, 1995.
    [2] Ljung, L., System Identification Theory for the User 2nd, Prentice-Hall,
       N.J., 1999.
    [3] Lewis, F. L. and Syrmos, V. L., Optimal Control, Wiley, N.Y., 1995.
    [4] Fiagbedzi, Y. A. and Pearson, A. E., “Feedback stabilization of linear
       autonomous time lag systems,” IEEE Transactions on Automatic Control,
       vol. 31, pp. 847-855, 1986.
    [5] Bodson, M. and Groszkiewicz, J. E., “Multivariable adaptive algorithms
       for reconfigurable flight control,” IEEE Transactions on Control System
       Technology, vol. 5, no. 2, pp. 217-229, 1997.
    [6] Moseler, O. and Isermann, R., “Application of model-based fault
       detection to a brushless DC motor,” IEEE Transactions on Industrial
       Electronics, vol. 47, no. 5, pp. 1015-1020, 2000.
    [7] Omerdic, E. and Roberts, G., “Thruster fault diagnosis and accommodation
       for open-frame underwater vehicles,” Control Engineering Practice, vol.
       12, pp. 1575-1598, 2004.
    [8] Visinsky, M. L., Cavallaro, J. R. and Walker, I. D., “A dynamic fault
       tolerance framework for remote robots,” IEEE Transactions on Robotics
       and Automation, vol. 11, no. 4, pp. 477-490, 1995.
    [9] Yen, G. and Ho, L. W., “Online multiple-model-based fault diagnosis and
       accommodation,” IEEE Transactions on Industrial Electronics, vol. 50,
       pp. 296-312, 2003.
    [10] Guo, S. M., Shieh, L. S., Chen, G., Lin, C. F. and Chandra, J., “State-
       space self-tuning control for nonlinear stochastic and chaotic hybrid
       system,” International Journal of Bifurcation Chaos, vol. 11, pp. 1079-
       1113, 2001.
    [11] Chowdhury, F. N., “Input-output modeling of nonlinear systems with time-
       varying linear models,” IEEE Transactions on Automatic Control, vol.
       45, pp. 1355-1358, 2000.
    [12] Shieh, L. S. and Tsay, Y. T., “Transformations of a class of
       multivariable control system to block companion forms,” IEEE
       Transactions on Automatic Control, vol. 27, pp. 199-203, 1982.
    [13] Soderstorm, T. and Stoica, P., System Identification, Prentice-Hall,
       N.Y., 1989.
    [14] Teixeria, M. C. M. and Zak, S. H., “Stabilizing controller design for
       uncertain nonlinear system using fuzzy models,” IEEE Transactions on
       Fuzzy Systems, 7, vol. 7 pp.133-142, 1999.
    [15] Lu, J., Chen, G., Zhang, S. and Celikovsky, S., “Bridge the gap between
       the Lorenz system and the Chen system,” International Journal of
       Bifurcation and Chaos, vol. 12, pp. 2917-2926, 2002.
    [16] Chen, G. and Dong, X., From Chaos to Order: Perspectives, Methodologies,
       and Applications, Singapore: World Scientific, 1998.
    [17] Chen, G. and Ueta, T., “Yet another chaotic attractor,” International
       Journal of Bifurcation Chaos, vol. 9, pp. 1465-1466, 1999.
    [18] Zhong, G. Q. and Tang, W. K. S., “Circuit implementation and
       synchronization of Chen’s attractor,” International Journal of
       Bifurcation Chaos, vol. 12, pp. 1423-1427, 2002.
    [19] Chen, G. and Dong, X., “Controlling Chua’s circuit,” Journal of
       Circuits, Systems and Computers, vol. 3, pp. 139-149, 1993.
    [20] Chen, G. and Dong, X., “On feedback control of chaotic continuous-time
       system,” IEEE Transactions on Circuits and Systems—I, Fundamental
       Theory and Applications, vol. 40, pp. 591-601, 1993.
    [21] Chen, G. and Ogorzalek, M. J., “Theme issue on chaos control and
       synchronization,” International Journal of Bifurcation Chaos, vol. 10,
       pp. 128-130, 2000.
    [22] Phoojaruenchanachai, S., Uahchinkui, K. and Prempraneerach, Y., “Robust
       stabilization of a state delayed system,” IEE Proceedings Control
       Theory and Applications, vol. 145, pp. 87-90, 1998.
    [23] Manitius, A., Tran, H., Payre, G. and Roy, R., “Computation of
       eigenvalues associated with functional differential equations,” SIAM
       Journal of Sciences, Statistics and Computations, vol. 8, pp. 222-247,
       1987.
    [24] Orlov, Y., Belkoura, L., Richard, J. P. and Dembrine, M., “On
       identifiability of linear time-delay systems,” IEEE Transactions on
       Automatic Control, vol. 47, pp. 1319-1324, 2002.
    [25] Fujita, M. and Shimemura, E., “Integrity against arbitrary feedback-
       loop failure in linear multivariable control system,” Automatica, vol.
       24, pp. 765-772, 1988.
    [26] Yang, Y., Yang, G. H. and Soh, Y. C., “Reliable control of discrete-
       time systems with actuator failure,” IEE Proceedings Control Theory and
       Applications, vol. 147, pp. 428-432, 2000.
    [27] Khosrowjerdi, M. J., Nikoukhah, R. and Safari-shad, N., “A mixed
       approach to simultaneous fault detection and control,” Automatica, vol.
       40, pp. 261-267, 2004.
    [28] Jiang, J., “Design of reconfigurable control systems using
       eigenstructure assignment,” International Journal of Control, vol. 59
       (2), pp. 395-410, 1994.
    [29] Wang, H. and Wang, Y., “Neural-network-based fault-tolerant control of
       unknown nonlinear systems,” IEE Proceedings Control Theory and
       Applications, vol. 146 (5), pp. 389-398, 1999.
    [30] Zhang, X. D., Parisini, T. and Marios, M. P., “Adaptive fault-tolerant
       control of nonlinear uncertain systems: an information-based diagnostic
       approach,” IEEE Transactions on Automatic Control, vol. 49, pp. 1259-
       1274, 2004.
    [31] Zhang, Y. M. and Jiang, J., “Active fault-tolerant control system
       against partial actuator failures,” IEE Proceedings Control Theory and
       Applications, vol.146, pp. 95-104, 2002.
    [32] Yu Ding-Li, Chang, T. K. and Yu, Ding-Wen, “Fault tolerant control of
       multivariable processes using auto-tuning PID controller,” IEEE
       Transactions on System, Man., and Cybernetics-Part B: Cybernetics, vol.
       35, no. 1, pp. 32-43, 2005.
    [33] Gawthrop, P. J., “Self-tuning PID controller: algorithms and
       implementation,” IEEE Trans. Automatic Control, vol. 31, no. 3, pp. 201-
       209, Mar. 1986.
    [34] Radke, F. and Isermann, R., “A parameter adaptive PID controller with
       stepwise parameter optimization,” Automatica, vol. 23, no. 4, pp. 449-
       457, 1987.
    [35] Lee, T. H., Hang, C. C., Ho, W. K. and Yue, P. K., “Implementation of a
       knowledge-based PID auto-tuner”, Automatica, vol. 29, no. 4, pp. 1107-
       1113, 1993.
    [36] Ruano, A. E. B., Fleming, P. J. and Jones, D. I., “Connectionist
       approach to PID auto-tuning,” Instit. Elect. Eng.-Proc. Part D: Control
       Theory Applications, vol. 139, no. 3, pp. 279-285, 1992.
    [37] Pentinnen, J. and Koivo, H. N., “Multivariable tuning regulators for
       unknown systems,” Automatica, vol. 16, pp. 393-398, 1980.
    [38] Davison E. J., “Multivariable tuning regulators: the feedforward and
       robust control of general servomechanism problem,” IEEE Transactions on
       Automatic Control, vol. 21, no. 1, pp. 35-47, Feb. 1976.
    [39] Zgorzelski, P., Unbehauen, H. and Niederlinski, A., “A new simple
       decentralized adaptive multivariable regulator and its application to
       multivariable plants,” in Proc. 11th IFAC World Congress, Tallin,
       Estonia, pp. 226-231, 1990.
    [40] Loh, A. P., Hang, C. C., Quek, C. K. and Vasnani, V. U., “Auto-tuning
       of multi-loop proportional-integral controllers using relay feedback,”
       Ind. Eng. Chem. Proc. Des. Dev., vol. 25, pp. 654-660, 1993.
    [41] Zhuang, M. and Atherton, D. P., “PID controller design for a TITO
       system,” Inst. Elect. Eng.-Proc. Pt. D: Control Theory Applications,
       Vol. 141, pp. 111-120, 1994.
    [42] Astrom, K. J. and Hagglund, T., “Automatic tuning of simple regulars
       with specifications on phase and amplitude margins,” Automatica, vol.
       20, pp. 645-651, 1984.
    [43] Koivo, H. N. and Tanttu, J. T., “Tuning of PID controller-survey of
       SISO and MIMO”, in Proc. Preprints IFAC Int. Symposium Intelligent
       Tuning Adaptive Control, Singapore, 1991.
    [44] Driver, R. D., Ordinary and Delay Differential Equations, New York:
       Springer-Verlag, 1977.

    下載圖示 校內:立即公開
    校外:2006-07-21公開
    QR CODE