| 研究生: |
徐浩麟 Tsui, Hou-lon |
|---|---|
| 論文名稱: |
無前端取樣保存放大器之3-V、28-mW、十位元、20-MS/s管線式類比數位轉換器 A 3-V 28-mW 10-bit 20-MSample/s Pipeline ADC Without Using a Front-End Sample-and-Hold Amplifier |
| 指導教授: |
魏嘉玲
Wei, Chia-ling |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2008 |
| 畢業學年度: | 96 |
| 語文別: | 英文 |
| 論文頁數: | 67 |
| 中文關鍵詞: | 管線 、取樣保持放大器 、啟動開關 、類比數位轉換器 |
| 外文關鍵詞: | sample-and-hold amplifier, pipeline, Analog-to-digital converter, bootstrapping switches |
| 相關次數: | 點閱:83 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本碩論係使用台灣積體電路公司(TSMC) 2P4M 0.35-μm CMOS製程,提出一個十位元、每秒二千萬次取樣之低功率管線式類比數位轉換器。為避免使用取樣保存放大器,因此轉換器的第一級採用新的架構;並配合寛擺幅之增益提高摺疊疊接放大器以降低功率消耗。除了利用回授電容切換技術,作為電容不匹配之補償外,轉換器亦採用啟動關關來取樣輸入訊號;此電路之優點為輸入訊號頻率相當於轉換器取樣速度。根據模擬結果,轉換器之差分非線性度及積分非線性度分別為 0.31-LSB 和 0.45-LSB。當輸入訊號達尼奎斯特頻率(10-MHz)時,其有效位元亦高於9.5位元。此轉換器晶片包含電壓參考電路,於3-V之操作電壓下,消耗功率及核心面積為28-mW和0.76-mm2。
This thesis describes a low power 10-bit 20-MS/s pipeline analog-to-digital converter (ADC) implemented in TSMC double-poly four-metal 0.35-μm CMOS technology. A new configuration at the first pipeline stage avoids using a dedicated sample-and-hold amplifier (SHA). The ADC employs a wide-swing, gain-boosted folded-cascode amplifier to further reduce power consumption. In addition to compensating for capacitor mismatch with a commutated feedback capacitor switching (CFCS) technique, the ADC introduces gate-bootstrapping switches to sample inputs with frequencies comparable to its sampling rate. The simulated differential and integral nonlinearity of the ADC are within 0.31 least significant bit (LSB) and 0.45-LSB respectively at full sampling rate. It exhibits higher than 9.5 effective number of bits (ENOB) for an input frequency at Nyquist (fin = 10-MHz). The ADC core consumes 28-mW including the on-chip voltage reference from a 3-V supply and occupies an area of 0.76-mm2.
[1] Mehr and L. Singer, “A 55-mW, 10-bit, 40-Msample/s Nyquist-rate CMOS ADC,” IEEE J. Solid-State Circuits, vol. 35, no. 3, pp. 318–325, Mar. 2000.
[2] P. C. Yu, and H. S. Lee, “2.5-V, 12-b, 5MS/s Pipelined CMOS ADC,” IEEE J. Solid-State Circuits, vol. 31, no. 12, pp. 1854-1861, Dec. 1996.
[3] K. Honda, F. Masanori and S. Kawahito, “A Low-Power Low-Voltage 10-bit 100MSample/s Pipeline A/D Converter Using Capacitance Coupling Techniques,” IEEE J. Solid-State Circuits, vol. 42, no. 4, pp. 757 – 765, Apr. 2007.
[4] Ryu, S. T, Song, B. S, and Bacrania K, “A 10-bit 50-MS/s Pipelined ADC With Opamp Current Reuse,” IEEE J. Solid-State Circuits, vol. 42, no. 3, pp. 475 – 485, Mar. 2007.
[5] M. Waltari and K. Halonen, “1-V 9-bit Pipelined Switched-Opamp ADC,” IEEE J. Solid-State Circuits, vol. 36, no. 1, pp. 129–134, Jan. 2001.
[6] B. Min, P. Kim, F. W. Bowman, D. W. Boisvert and A. J. Aude, “A 69mW 10b 80MS/s Pipelined CMOS ADC,” IEEE J. Solid-State Circuits, vol. 38, no. 12, pp. 2031 – 2039, Dec. 2003.
[7] G. Hoogzaad, R. Roovers, “A 65-mW, 10-bit, 40-Msample/s BiCMOS Nyquist ADC in 0.8 mm2,” IEEE J. Solid-State Circuits, vol. 34, no. 12, pp. 1796 – 1802, Dec. 1999.
[8] D. W. Cline, P. R. Gray, “A Power Optimized 13-b 5 Msamples/s Pipelined Analog-to-Digital Converter in 1.2-μm CMOS,” IEEE J. Solid-State Circuits, vol. 31, no. 3, pp. 294–303, Mar. 1996.
[9] M. Abo and P. R. Gray, “A 1.5-V, 10-bit, 14.3-MS/s CMOS Pipeline Analog-to-Digital Converter,” IEEE J. Solid-State Circuits, vol. 34, no.5, pp. 599–606, May. 1999.
[10] J.B. Park et.al, “A 10-b 150-Msample/s 1.8-V 123-mW CMOS A/D Converter With 400-MHz Input Bandwidth,” IEEE J. Solid-State Circuits, vol. 39, no. 8, pp.1335-1337, Aug. 2004.
[11] D. A. Johns and K. Martin, “Analog Integrated Circuit Design,” New York, Wiley, 1997.
[12] G. A. Rincon-Mora, “Voltage Reference from Diodes to Precision High-Order Bandgap Circuits,” New York, Wiley, 2002.
[13] K. N. Leung, P. K. T. Mok and C. Y. Leung, “A 2-V 23-μA 5.3-ppm/0C Curvature-Compensated CMOS Bandgap Voltage Reference,” IEEE J. Solid-State Circuits, vol. 38, no. 3, pp. 561–364, Mar. 2003.
[14] R. Jacob Baker, “CMOS: Circuit Design, Layout, and Simulation,” Wiley-IEEE Press, 2005.
[15] T. Cho and P. Gray, “A 1.5-V, 10-bit, 14.3-MS/s CMOS Pipeline Analog-to-Digital Converter,” IEEE J. Solid-State Circuits, vol. 30, no.3, pp. 166–172, Mar. 1995.
[16] K. Bult and G. Geelen, “A Fast Settling CMOS Opamp for SC Circuits With 90-dB DC Gain,” IEEE J. Solid-State Circuits, vol. 25, no. 6, pp. 1379–1990, Dec. 1990.
[17] O. Choksi, L. Richard Carley, “Analysis of Switched-Capacitor Common-Mode Feedback Circuit,” IEEE Trans. Circuits Syst.Ⅰ, vol. 50, no. 12, pp. 906-917, Dec. 2003.
[18] Ka Yin Leung, “Fully Differential High Gain Cascode Amplifier,” U.S. Patent 5,780,040, May. 5, 1998.
[19] J. Guilherme et.al, (2000, Sep). Pipeline ADC for ADSL – Final Developments. CHIPIDEA Microelectronics., PORTUGAL.
Available:http://www.imse.cnm.es/esd-msd/WORKSHOPS/MIXMODEST_INTERNAL/Jorge-29-9-2000.pdf
[20] J. Doernberg, H-S. Lee, D. A. Hodges, “Full-Speed Testing of A/D Converters,” IEEE J. Solid-State Circuits, vol. SC-19, no. 6, Dec. 1984.
[21] S. Yoo, J. Park, S. Lee, and U. Moon, “A 2.5-V 10-b 120-MSample/s CMOS Pipelined ADC based on Merged-Capacitor Switching,” IEEE Trans. Circuits Syst. II, vol. 51, no. 5, pp. 269-275, May. 2004.
[22] S. K. Gupta, M. A. Inerfield, and J.Wang, “A 1-GS/s 11-bit ADC With 55-dB SNDR, 250-mW Power Realized by a High Bandwidth Scalable Time-Interleaved Architecture,” IEEE J. Solid-State Circuits, vol. 41, no.12, pp. 2650–2657, Dec. 2006.
[23] R. Wang, K. Martin, D. Johns, and G. Burra, “A 3.3 mW 12 MS/s 10b Pipelined ADC in 90 nm Digital CMOS,” in IEEE ISSCC Dig. Tech. Papers, pp. 278–279, Feb. 2005.
[24] Jian Li, Xiaoyang Zeng, Lei Xie, Jun Chen, Jianyun Zhang, Yawei Guo, “A 1.8-V 22-mW 10-bit 30-MS/s Pipelined CMOS ADC for Low-Power Subsampling Applications,” IEEE J. Solid-State Circuits, vol. 43, no. 2, pp. 321–329, Feb. 2008.