簡易檢索 / 詳目顯示

研究生: 葉宗汶
Yeh, Zong-Wun
論文名稱: 添加劑和鍍液對流於電鍍填孔影響之研究
Effect of additives and physical convection on Cu via filling with high AR
指導教授: 李文熙
Lee, Wen-Hsi
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2024
畢業學年度: 112
語文別: 中文
論文頁數: 98
中文關鍵詞: 高深寬比電鍍化學沉積矽穿孔
外文關鍵詞: High aspect ratio, Electrochemical deposition, TSV
相關次數: 點閱:75下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究透過在矽基板通孔技術上使用化學電鍍的方式將穿孔處進行電化學沉積金屬離子,使得盲孔處產生相應的導電效果。並在此基礎上針對高深寬比(AR Ratio)進行完整電鍍,然而,孔徑因過小的因素下,電鍍母液無法有效進入孔徑濕潤孔壁,如何有效排除電鍍液表面張力的問題也是本次研究需改善的一環。
    在研究流程上,本次研究分為五個部分。第一部分講述的是透過硫酸銅、硫酸以及鹽酸調配出的母液開始電鍍,接著加入介面活性劑SDS從中取出最適合的添加量以及電鍍電位,而這個部分得出的最佳電位範圍是在0.5V-0.6V之間,而介面活性劑添加量維持在100ppm之間最佳。使用不同成分比例的電鍍母液參數進行電鍍填銅,預先使用有限元素分析軟體Ansys軟體進行填孔模擬分析,找出最佳填銅參數後,因此後續的四個部分將透過實驗驗證搭配掃描式顯微鏡(SEM)、能量色散X射線光譜(EDS),表面粗度分析儀(Alpha step)進行分析,了解電鍍填銅表面形貌以及其內部晶格填孔表現。第二部分在探討的是抑制劑PEG的作用,在第一部分已經成功電鍍銅在孔洞內,但是樣品的填孔程度並未達到要求所以透過抑制劑降低電流密度,使電鍍時間增長,抑制劑原理是它會在樣品端形成一層保護層,由這個保護層去減少電流通過的大小,而在加入抑制劑後會使樣品所承受的電場更加均勻,使樣品電鍍出來的鍍層更加平整,此部分我們最後以50ppm的PEG4000為最佳的添加量,在抑制電流的同時,能夠取得較佳的粗糙度進而提升導電性。
    第三部分為平整劑JGB,在第二部分的時候已經基本上完成我們預期的目標,接著再透過加入適量JGB進一步提升電鍍時的電流穩定度,並且使電鍍層的顆粒更加緻密,透過這一方法能夠提升鍍層的導電率,最後透過不同添加的測試,得到3ppm JGB能夠使孔洞填滿並且不會產生填充缺陷。
    第四部份為加速劑MPS,前三部分確認了最佳添加劑濃度後,PEG-MPS-Cl-有競爭性吸附效應的存在,因此,使用計時電流中添加不同濃度的抑制劑與加速劑做化學分析,透過添加不同濃度的劑量得出MPS在20ppm的添加量整體的電流效率被大幅提升,並且與抑制劑的搭配下既有加速孔底沉積效果且對其電流效率也有穩定的特性,整體的電流量也較小劑量的抑制劑與加速劑更低,有助於銅填充的表現。
    第五部分為鍍液強制對流,以上添加劑濃度與電鍍電位確認為最佳配比參數後,針對鍍液做不同強度紊流條件比較,藉由縮短電鍍時間至30min討論其擾流對銅沉積影響性,從結果上來看,降低電鍍時間且紊流強度達至800rpm時可以有效將單孔與多孔高深寬比之孔洞完全填充。

    This study investigates the impact of additives and physical convection on high aspect ratio (AR) electroplating via filling. As chip manufacturing advances, the demand for enhanced performance and reduced costs grows. TSV (Through Silicon Via) technology has gained attention for improving computational efficiency and reducing electronic conduction energy consumption. However, high AR scenarios pose challenges for effective electroplating via filling, particularly in wetting hole walls. Ansys finite element analysis software was used to simulate the via filling process, identifying optimal copper plating parameters, which were then validated experimentally. Different plating solution compositions were tested to analyze the effects of suppressors and additives on via filling performance. Adding the surfactant SDS reduced the surface tension of the plating solution, improving wettability and enabling penetration into small holes. At a potential of 0.3V, experiments with varying SDS concentrations showed that 100ppm SDS provided the best filling results and prevented copper deposition fractures. The plating solution potential was then analyzed, with 0.5V identified as the most suitable. This potential allowed copper deposition while minimizing hydrogen gas generation, which could affect plating quality. Via plating simulations confirmed that uniform current distribution is essential for complete filling, with current density highest at the bottom corners of the holes and decreasing inwardly. Adding the suppressor PEG4000 improved the smoothness of the plating layer, reduced current efficiency, and enhanced plating continuity and conductivity. A concentration of 50ppm PEG4000 achieved the best results. The leveling agent JGB reduced crystal grain size, increasing plating layer density and conductivity. With 10ppm chloride ions, adding 3ppm JGB provided the best via filling performance, as confirmed by SEM analysis showing uniform copper deposition. The accelerator MPS increased current efficiency, enhancing copper ion reduction and deposition rates at the bottom of the hole, achieving complete filling. A concentration of 20ppm MPS provided optimal results. Finally, forced convection was applied, with an intensity of 800rpm significantly improving via filling quality. In summary, this study optimized electroplating via filling parameters.

    摘要 I Extended abstract III 致謝 IX 目錄 X 圖目錄 XII 第一章 緒論 1.1研究背景 1 1.2研究動機 4 1.3章節概述 5 第二章 文獻回顧 2.1電化學原理 6 2.1.1線性伏安法(Linear Sweep Voltammetry) 7 2.1.2循環伏安法(Cyclic Voltammetry) 9 2.1.3計時電位/電流法(Chronoamperometry) 10 2.2銅電鍍方法 11 2.2.1添加劑(Additives) 17 2.2.2介面活性劑(surfactant) 24 2.3有限元素分析數值模擬 25 2.3.1單元類型(Element type) 26 2-3-2Ansys Console流場模組對電化學應用28 2.4電鍍填孔技術與機制 30 第三章 實驗方法 3.1實驗流程 31 3.2實驗步驟 33 3.2.1溶液製備 34 3.2.2實驗藥品介紹 35 3.2.3實驗方法介紹 36 3.3有限元素數值模擬架構介紹 39 3.3.1數值模型建立 39 3.3.2基本條件假設 40 3.3.3統御方程式與邊界設定 40 3.4實驗設備介紹 42 3.4.1Metrohm Autolab 42 3.4.2光學顯微鏡(Optical Microscope) 43 3.4.3掃描式電子顯微鏡(Scanning Electron Microscope) 44 3.4.4SPD-3606直流電源供應器 45 3.4.5原子力顯微鏡(Atomic Force Microscopy) 46 3.4.6薄膜厚度輪廓量測儀47 3.4.7三離子束剖面拋光機(Triple Ion-Beam Milling System) 48 第四章 實驗結果與討論 50 4.1高AR鍍孔電鍍母液分析 51 4.1.1介面活性劑十二烷基硫酸鈉 51 4.1.2電鍍溶液電位影響 54 4.1.3鍍孔電鍍模擬 57 4.2抑制劑行為的影響性 61 4.2.1抑制劑電化學分析 61 4.2.2抑制劑添加量影響 64 4.2.3抑制劑添加粗糙度分析 67 4.3平整劑行為的影響性 68 4.3.1平整劑電化學分析 68 4.3.2平整劑添加量影響 69 4.3.3平整劑添加量銅分佈分析71 4.4加速劑行為的影響性72 4.4.1加速劑電化學分析 73 4.4.2加速劑添加量影響 74 4.5單孔/多孔強制對流影響 78 第五章結論與未來展望 5.1結論 80 5.2未來展望 80 參考文獻 81

    [1] John H,Lau, 矽通孔3D集成技術, 科學出版
    [2] HBM Engineering Co., Lansing, Ill., USA, Pulse and pulse-reverse electroplating
    [3] Jean-Claude Puippe Steiger Galvanotechnique SA Lausanne, Vaud, Switzerland, Qualitative Approach to Pulse Plating. NASF SURFACE TECHNOLOGY WHITE PAPERS 85 (10), 6-14 (July 2021)
    [4] L. Stappers*,z and J. Fransaer**The Effect of Turbulence on the Electrodeposition of Composite Coatings
    [5] Kondo, K.; Yamakawa, N.; Tanaka, Z.; Hayashi, K. Copper Damascene Electrodeposition and Additives. Journal of Electroanalytical Chemistry 2003,559, 137-142.
    [6] M. KOLB, J. F. GOUYET and B. SAPOVA. Diffusion of Interacting Particles in a Concentration Gradient: Scaling, Critical Slowing Down and Phase Separation. To cite this article: M. Kolb et al 1987 EPL 3 33
    [7] 薛康琳K.L. Hsueh、周雅靜Y.C. Chou,Simulation Design Of Metallization Equipment for Advance Packaging Process.工業材料雜誌382期
    [8] 李東光, 電鍍添加劑配方與製備技術. 化學工業出版
    [9] Ralph E. White., James A. Trainham., John Newman., Thomas W. Chapman, Potential-Selective Deposition of Copper from Chloride Solutions Containing Iron. University of South Carolina Scholar Commons 1977, Vol. 124, No. 5
    [10] Nagy, Z., Blaudeau, J. P., Hung, N. C., Curtiss, L. A., & Zurawaki, D. J. (1995). Chloride ion catalysis of the copper deposition reaction. Journal of The Electrochemical Society, 142(6), L87-L89.
    [11] N. Zukauskaite, and A. Malinauskas, “Electrocatalysis by a Brightener in Copper Electrodeposition,” Sov. Electrochem., vol. 24, pp. 2564, 1989.
    [12] Kondo, K.; Akolkar, R. N.; Barkey, D. P.; Yokoi, M.: Copper Electrodeposition
    for Nanofabrication of Electronics Devices; Springer New York, 2013.
    [13] Z. V. Feng, and A. A. Gewirth, "Inhibition Due to the Interaction of polyethylene Glycol, Chloride, and Copper in plating baths: A Surface Enhanced Raman Study," J. Phys. Chem. B, vol. 107, pp. 9415, 2003.
    [14] Shih-Chieh Chang., Jia-Min Shieha)., Kun-Cheng Lin., Bau-Tong Dai., Ting-Chun Wang, Chia-Fu Chen, and Ming-Shiann Feng., Ying-Hao Li and Chih-Peng Lu,Wetting effect on gap filling submicron damascene by an electrolyte free of levelers.
    [15] Li Qing ling, Study of Mesh Dividing Methods in ANSYS., School of Mechanical, Shanghai Dian ji University, Shanghai, 200245) R. Sekar, T. Selvi, C. Eagammai, and S. Jayakrishnan, "Chemical stripping of gold deposits from different substrates," Transactions of the IMF, vol. 85, no. 3, pp. 166-168, 2007.
    [16] Petar Miljković1[0000-0003-0450-3599], Branka Radovanović1[0000-0002-5706-8757], Veljko Begović1[0000-0001-8578-8287] and Miloš Jovanović1.,Analysis of Fluid Flow Between Two Parallel Plates Using Different Numerical Methods.
    [17] N. Anjana, A. Amarnath, and M. H. Nair, "Toxic hazards of ammonia release and population vulnerability assessment using geographical information system," Journal of environmental management, vol. 210, pp. 201-209, 2018.
    [18] A. Blair, "Silver plating," Metal Finishing, vol. 98, no. 1, pp. 298-303, 2000.
    [19] Hui-Hui Yuwen, Xin-Ping Zhang., "Numerical simulation of the TSV-Cufilling by
    electroplating process with the accelerator and suppressor," Lab of Smart Materials and Electronic Packaging in School of Materials Science and Engineering, vol. 39, pp. 17, 2016.
    [20] P. A. Tipler and G. Mosca, Electricity and magnetism, light & elementary modern physics. Freeman, 2004.
    [21] A. A. N. EC08, "Basic overview of the working principle of a potentiostat/galvanostat (PGSTAT)–Electrochemical cell setup," Metrohm Autolab. BV, pp. 1-3, 2011.

    無法下載圖示 校內:2029-07-20公開
    校外:2029-07-20公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE