簡易檢索 / 詳目顯示

研究生: 張現源
Chang, Hsien-yuan
論文名稱: Ca(Mg1/3Nb2/3)O3陶瓷微波特性之改善及應用
Improvement and Applications of Ca(Mg1/3Nb2/3)O3 Ceramics at Microwave Frequency
指導教授: 施權峰
Shih, Chuan-Feng
黃正亮
Huang, Cheng-Liang
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2008
畢業學年度: 96
語文別: 中文
論文頁數: 76
中文關鍵詞: 介電常數品質因數陶瓷微波
外文關鍵詞: ceramic, microwave, dielectric, Ca(Mg1/3Nb2/3)O3
相關次數: 點閱:65下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在本篇論文中將探討Ca(Mg1/3Nb2/3)O3陶瓷材料系統的微波介電特性及材料的微結構 , 藉由正負頻率溫度係數的互補,使其達到平衡。
    Ca(Mg1/3Nb2/3)O3 具有負的共振頻率溫度係數 , 我們選擇添加Ca0.8Sm0.4/3TiO3 及(Ca0.61Nd0.26)TiO3來調整其τƒ。添加Ca0.8Sm0.4/3TiO3的材料以0.8Ca(Mg1/3Nb2/3)O3 – 0.2Ca0.8Sm0.4/3TiO3的介電特性較好εr~34,Q׃~35000GHz,τƒ~-3 ppm/oC,燒結溫度為1425℃。添加(Ca0.61Nd0.26)TiO3以0.6Ca(Mg1/3Nb2/3)O3–0.4(Ca0.61Nd0.26)TiO3的介電特性較好εr~47,Q׃~37000GHz,τƒ~6 ppm/oC , 燒結溫度為1375℃。
    此外本論文還以FR4、Al2O3 及0.8Ca(Mg1/3Nb2/3)O3 -0.2Ca0.8Sm0.4/3TiO3作為基板來設計一微帶線帶通濾波器,濾波器的規格為:中心頻率 2GHz,並使用電磁模擬軟體IE3D來進行電腦模擬。

    The microwave dielectric properties and the material microstructures of the Ca(Mg1/3Nb2/3)O3 ceramic system were investigated in this paper. By compensating for positive and negative temperature coefficient one. We achieved the balance.
    Ca(Mg1/3Nb2/3)O3 with negative τƒ values. we added Ca0.8Sm0.4/3TiO3 and (Ca0.61Nd0.26)TiO3 to adjust τf value . The outcome reveals that the 0.8Ca(Mg1/3Nb2/3)O3 – 0.2Ca0.8Sm0.4/3TiO3 can be sintered at 1425oC and has the characteristics of εr ~ 34、 Q×f ~ 35000(GHz)、and τf value ~ -3ppm/oC.
    0.6Ca(Mg1/3Nb2/3)O3 – 0.4(Ca0.61Nd0.26)TiO3 has the characteristics of εr ~ 47、Q׃ ~ 37000(GHz)、τƒ ~ 6ppm/oC can be sintered at 1375℃.
    Finally, we design and fabricate band-pass filters with 2GHz center frequency on FR4、Al2O3、0.8 Ca(Mg1/3Nb2/3)O3 - 0.2Ca0.8Sm0.4/3TiO3 substrates respectively. And we compared with the results of the simulation and measurement.

    目錄 摘要 I Abstract II 誌謝 III 目錄 IV 表目錄 VII 圖目錄 VIII 第一章 緒論 1 1-1前言 1 1-2 研究目的 1 第二章 介電材料原理 2 2-1介電材料的微波電性分析 2 2-2介電共振器(Dielectric Resonator, DR) 6 2-3 鈣鈦礦之結構 9 2-4 燒結理論 10 2-4-1 液相燒結理論 10 第三章 微帶線及濾波器之原理 12 3-1 濾波器的簡介 12 3-2 微帶線原理 15 3-2-1 微帶線的損失 15 3-2-2 微帶線的不連續效應: 16 3-2-3 微帶線傳輸組態 18 3-2-4 微帶線各項參數公式 19 3-3 共振器耦合型態 22 3-3-1 電場耦合 22 3-3-2 磁場耦合 25 3-3-3 混合耦合 28 3-4 饋入結構分析[18] 30 3-4-1 非對稱性饋入 30 3-4-2對稱性饋入 33 第四章 實驗程序與量測方法 35 4-1 材料的製備 35 4-1-1 xCa(Mg1/3Nb2/3)O3 -(1-x) Ca0.8Sm0.4/3TiO3 35 4-1-2 xCa(Mg1/3Nb2/3)O3 -(1-x)(Ca0.61Nd0.26)TiO3 35 4-2 微波介電材料的特性分析與量測 37 4-2-1 X-Ray(XRD)分析 37 4-2-2 掃瞄式電子顯微鏡(SEM)分析 37 4-2-3密度之量測 37 4-2-4 微波介電特性的量測 38 4-3 濾波器元件之製作與量測 39 4-3-1 濾波器設計 39 4-3-2 濾波器實作 40 4-3-3 濾波器量測 41 第五章 實驗結果與討論 42 5-1 xCa(Mg1/3Nb2/3)O3 -(1-x)Ca0.8Sm0.4/3TiO3之微波特性探討 42 5-2 xCa(Mg1/3Nb2/3)O3 - (1-x)(Ca0.61Nd0.26)TiO3之微波特性探討 44 5-3 濾波器的響應 46 5-3-1 FR4基板 46 5-3-2 Al2O3基板 47 5-3-3 0.8Ca(Mg1/3Nb2/3)O3 -0.2Ca0.8Sm0.4/3TiO3基板 48 第六章 結論 73 參考文獻 74

    [1] David M. Pozar “Microwave Engineering”, Addison-Wesley ,1998
    [2] D. Kajfez. “Computed model field distribution for isolated dielectric resonators”, IEEE. Trans. Microwave Theory Tech. , vol. MTT-32, pp.
    [3] V. N. Eremenko , Y. V. Naidich , and I. Aienko , Liquid phase sintering, New York: Consultants Bureau, 1970, ch. 4.
    [4] K. S. Hwang , Phd. Thesis , Rensselaer Ploytechnic in Troy 1984.
    [5] J. W. Cahn and R. B. Heady , “Analysis of capillary forces in liquid-phase sintering of jagged particles”, J. Am. Ceram. Soc., vol. 53, pp. 406-409, Jul. 1970.
    [6] W. J. Huppmann, and G. Petzow, Sintering processes, New York: Plenum Press, pp. 189-202, 1979.
    [7] W. J. Huppmann, and G. Petzow, Ber. bunnsenges phys. chem., 82, pp. 308, 1978.
    [8] R. M. German, Liquid phase sintering, New York: Plenum Press, 1985, ch. 4.
    [9] J. H. Jean, and C. H. Lin, “Coarsening of tungsten particles in W-Ni-Fe alloys” , J. Mater. Sci., vol. 24, pp. 500-504, Feb. 1989.
    [10] E. J. Denlinger, “Losses of microstrip lines”, IEEE Trans. Microwave Theory Tech., vol. MIT-28, pp. 513–522, Jun 1980.
    [11] R. A. Pucel, D. J. Masse, and C. E Hartwig, “Losses in microstrip”, IEEE. Trans. Microwave Theory Tech., vol. MIT-16, pp. 342-350, Jun 1968.
    [12] V. Nalbandian, W. Steenart, “Discontinunity in symmetric striplines due to impedance step and their compensations ”, IEEE Trans. Microwave Theory Tech., vol. MTT-20 , pp. 573-578, Sep. 1980.
    [13] K. C. Gupta, R. Garg, I. Bahl, and E. Bhartis, Microstrip lines and slotlines, second edition., Boston: Artech House, 1996.

    [14] E. O. Hammerstard, in Proceedings of the european microwave conference., pp. 268-272, 1975.
    [15] David M. Pozar , Microwave engineering, Reading: Addison-Wesley, 1998
    [16] J. Helszajn, “Microwave Engineering: Passive, Active, and Non-reciprocal Circuits”, McGraw-Hill, 1992.
    [17] L. H. Hsieh, K. Chang , “Tunable Microwave Bandpass Filters With Two Transmission Zeros”, IEEE Trans. Microwave Theory Tech., vol. 51,NO.2 pp.
    520-525, Feb. 2003.
    [18] S.Y. Lee , C.M. Tsai, “New cross-coupled filter design using improved hairpin resonators”, IEEE Trans. Microwave Theory Tech., vol.48, pp.
    [19] K. C. Gupta, R. Garg , I. Bahl , and P. Bhartia , Microstrip Lines and Slotlines, 2nd ed. Boston, MA: Artech House, ch. 3.
    [20] P. Wheless, and D. Kajfez “The use of higher resonant modes in measuring the dielectric constant of Dielectric Resonators”, IEEE MTT-S Symposium Dig.,pp. 473-476, 1985.
    [21] Y. Kobayashi, and N. Katoh, “Microwave measurement of dielectric properties of low-loss materials by dielectric rod resonator method”, IEEE Trans. Micr- owave Theory Tech., vol. MTT-33, pp. 586-592, 1985.
    [22] Y. Kobayashi, and S. Tanaka, “Resonant modes of a dielectric resonator short circuited at both ends by parallel conducting plates” , IEEE. Trans. Microwave Theory Tech., vol. MTT-28 , pp. 1077-1085 , 1980.
    [23] Cheng-Liang Huang, , Hui-Liang Chen , Chen-Cher Wu , “Improved high Q value of CaTiO3–Ca(Mg1/3Nb2/3)O3 solid solution with near zero temperature coefficient of resonant frequency” , Mater. Res. Bull. 36 (2001) 1645–1652
    [24] Ki Hyun Yoon , Woo Sup Kim , Eung Soo Kim , “ Dependence of theoctahedral bond valence on microwave dielectric properties of Ca1-xSm2x/3TiO 3 ceramics” , Mat. Sci. Engin. B99 (2003)112 - 115
    [25] Masashi YOSHIDA , Naoki HARA, Takahiro TAKADA, Akira SEKI, “structure and dielectric properties of (Ca0.61Nd0.26)TiO3”, Jpn. J. Appl. Phys. 36 (1997) PP. 6818 - 6823

    下載圖示 校內:2018-07-30公開
    校外:2018-07-30公開
    QR CODE