| 研究生: |
張現源 Chang, Hsien-yuan |
|---|---|
| 論文名稱: |
Ca(Mg1/3Nb2/3)O3陶瓷微波特性之改善及應用 Improvement and Applications of Ca(Mg1/3Nb2/3)O3 Ceramics at Microwave Frequency |
| 指導教授: |
施權峰
Shih, Chuan-Feng 黃正亮 Huang, Cheng-Liang |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2008 |
| 畢業學年度: | 96 |
| 語文別: | 中文 |
| 論文頁數: | 76 |
| 中文關鍵詞: | 介電常數 、品質因數 、陶瓷 、微波 |
| 外文關鍵詞: | ceramic, microwave, dielectric, Ca(Mg1/3Nb2/3)O3 |
| 相關次數: | 點閱:65 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在本篇論文中將探討Ca(Mg1/3Nb2/3)O3陶瓷材料系統的微波介電特性及材料的微結構 , 藉由正負頻率溫度係數的互補,使其達到平衡。
Ca(Mg1/3Nb2/3)O3 具有負的共振頻率溫度係數 , 我們選擇添加Ca0.8Sm0.4/3TiO3 及(Ca0.61Nd0.26)TiO3來調整其τƒ。添加Ca0.8Sm0.4/3TiO3的材料以0.8Ca(Mg1/3Nb2/3)O3 – 0.2Ca0.8Sm0.4/3TiO3的介電特性較好εr~34,Q׃~35000GHz,τƒ~-3 ppm/oC,燒結溫度為1425℃。添加(Ca0.61Nd0.26)TiO3以0.6Ca(Mg1/3Nb2/3)O3–0.4(Ca0.61Nd0.26)TiO3的介電特性較好εr~47,Q׃~37000GHz,τƒ~6 ppm/oC , 燒結溫度為1375℃。
此外本論文還以FR4、Al2O3 及0.8Ca(Mg1/3Nb2/3)O3 -0.2Ca0.8Sm0.4/3TiO3作為基板來設計一微帶線帶通濾波器,濾波器的規格為:中心頻率 2GHz,並使用電磁模擬軟體IE3D來進行電腦模擬。
The microwave dielectric properties and the material microstructures of the Ca(Mg1/3Nb2/3)O3 ceramic system were investigated in this paper. By compensating for positive and negative temperature coefficient one. We achieved the balance.
Ca(Mg1/3Nb2/3)O3 with negative τƒ values. we added Ca0.8Sm0.4/3TiO3 and (Ca0.61Nd0.26)TiO3 to adjust τf value . The outcome reveals that the 0.8Ca(Mg1/3Nb2/3)O3 – 0.2Ca0.8Sm0.4/3TiO3 can be sintered at 1425oC and has the characteristics of εr ~ 34、 Q×f ~ 35000(GHz)、and τf value ~ -3ppm/oC.
0.6Ca(Mg1/3Nb2/3)O3 – 0.4(Ca0.61Nd0.26)TiO3 has the characteristics of εr ~ 47、Q׃ ~ 37000(GHz)、τƒ ~ 6ppm/oC can be sintered at 1375℃.
Finally, we design and fabricate band-pass filters with 2GHz center frequency on FR4、Al2O3、0.8 Ca(Mg1/3Nb2/3)O3 - 0.2Ca0.8Sm0.4/3TiO3 substrates respectively. And we compared with the results of the simulation and measurement.
[1] David M. Pozar “Microwave Engineering”, Addison-Wesley ,1998
[2] D. Kajfez. “Computed model field distribution for isolated dielectric resonators”, IEEE. Trans. Microwave Theory Tech. , vol. MTT-32, pp.
[3] V. N. Eremenko , Y. V. Naidich , and I. Aienko , Liquid phase sintering, New York: Consultants Bureau, 1970, ch. 4.
[4] K. S. Hwang , Phd. Thesis , Rensselaer Ploytechnic in Troy 1984.
[5] J. W. Cahn and R. B. Heady , “Analysis of capillary forces in liquid-phase sintering of jagged particles”, J. Am. Ceram. Soc., vol. 53, pp. 406-409, Jul. 1970.
[6] W. J. Huppmann, and G. Petzow, Sintering processes, New York: Plenum Press, pp. 189-202, 1979.
[7] W. J. Huppmann, and G. Petzow, Ber. bunnsenges phys. chem., 82, pp. 308, 1978.
[8] R. M. German, Liquid phase sintering, New York: Plenum Press, 1985, ch. 4.
[9] J. H. Jean, and C. H. Lin, “Coarsening of tungsten particles in W-Ni-Fe alloys” , J. Mater. Sci., vol. 24, pp. 500-504, Feb. 1989.
[10] E. J. Denlinger, “Losses of microstrip lines”, IEEE Trans. Microwave Theory Tech., vol. MIT-28, pp. 513–522, Jun 1980.
[11] R. A. Pucel, D. J. Masse, and C. E Hartwig, “Losses in microstrip”, IEEE. Trans. Microwave Theory Tech., vol. MIT-16, pp. 342-350, Jun 1968.
[12] V. Nalbandian, W. Steenart, “Discontinunity in symmetric striplines due to impedance step and their compensations ”, IEEE Trans. Microwave Theory Tech., vol. MTT-20 , pp. 573-578, Sep. 1980.
[13] K. C. Gupta, R. Garg, I. Bahl, and E. Bhartis, Microstrip lines and slotlines, second edition., Boston: Artech House, 1996.
[14] E. O. Hammerstard, in Proceedings of the european microwave conference., pp. 268-272, 1975.
[15] David M. Pozar , Microwave engineering, Reading: Addison-Wesley, 1998
[16] J. Helszajn, “Microwave Engineering: Passive, Active, and Non-reciprocal Circuits”, McGraw-Hill, 1992.
[17] L. H. Hsieh, K. Chang , “Tunable Microwave Bandpass Filters With Two Transmission Zeros”, IEEE Trans. Microwave Theory Tech., vol. 51,NO.2 pp.
520-525, Feb. 2003.
[18] S.Y. Lee , C.M. Tsai, “New cross-coupled filter design using improved hairpin resonators”, IEEE Trans. Microwave Theory Tech., vol.48, pp.
[19] K. C. Gupta, R. Garg , I. Bahl , and P. Bhartia , Microstrip Lines and Slotlines, 2nd ed. Boston, MA: Artech House, ch. 3.
[20] P. Wheless, and D. Kajfez “The use of higher resonant modes in measuring the dielectric constant of Dielectric Resonators”, IEEE MTT-S Symposium Dig.,pp. 473-476, 1985.
[21] Y. Kobayashi, and N. Katoh, “Microwave measurement of dielectric properties of low-loss materials by dielectric rod resonator method”, IEEE Trans. Micr- owave Theory Tech., vol. MTT-33, pp. 586-592, 1985.
[22] Y. Kobayashi, and S. Tanaka, “Resonant modes of a dielectric resonator short circuited at both ends by parallel conducting plates” , IEEE. Trans. Microwave Theory Tech., vol. MTT-28 , pp. 1077-1085 , 1980.
[23] Cheng-Liang Huang, , Hui-Liang Chen , Chen-Cher Wu , “Improved high Q value of CaTiO3–Ca(Mg1/3Nb2/3)O3 solid solution with near zero temperature coefficient of resonant frequency” , Mater. Res. Bull. 36 (2001) 1645–1652
[24] Ki Hyun Yoon , Woo Sup Kim , Eung Soo Kim , “ Dependence of theoctahedral bond valence on microwave dielectric properties of Ca1-xSm2x/3TiO 3 ceramics” , Mat. Sci. Engin. B99 (2003)112 - 115
[25] Masashi YOSHIDA , Naoki HARA, Takahiro TAKADA, Akira SEKI, “structure and dielectric properties of (Ca0.61Nd0.26)TiO3”, Jpn. J. Appl. Phys. 36 (1997) PP. 6818 - 6823