| 研究生: |
王照程 Wang, Chao-Cheng |
|---|---|
| 論文名稱: |
矽烯奈米帶吸附鹼金屬與鹵素原子的穩定性與電子性質 Stability and electronic properties of alkali- and halogen-atom-adsorbed silicene nanoribbons |
| 指導教授: |
林明發
Lin, Ming-Fa |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 物理學系 Department of Physics |
| 論文出版年: | 2016 |
| 畢業學年度: | 104 |
| 語文別: | 中文 |
| 論文頁數: | 46 |
| 中文關鍵詞: | 鹼金屬 、鹵素 、矽烯奈米帶 |
| 外文關鍵詞: | alkali, halogen, ASiNRs |
| 相關次數: | 點閱:92 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
由於石墨烯奈米結構為近年來非常熱門的材料,但現行半導體製造多以矽為主,矽烯奈米結構研究將有助於降低製造廠轉換製成的成本,所以矽烯奈米結構研究也越發熱門。本研究探討鋸齒狀矽烯奈米帶(ASiNRs)一維材料,吸附鹼金屬與鹵素原子的能帶結構。我們發現,將寬度為十二的ASiNRs,吸附鹼金屬鋰、鈉、鉀、銣與鹵素氟、氯、溴、碘等八種原子,吸附濃度到達16.67% ,為使系統吸附原子後,結構不彎曲的最大濃度。鹼金屬:鋰、鈉、鉀、銣最佳吸附位子在,矽原子蜂巢狀結構正中心上方處(Hollow);而鹵素:氟、氯、溴、碘最佳吸附位子在,較高的矽原子正上方處(Top)。而隨著吸附鹼金屬與氟原子的電荷轉移的現象,打開了ASiNRs吸附系統的金屬性;吸附氯、溴和碘,則呈現半導體特性。呈現金屬性的載子分為兩類。吸附鹼金屬原子的系統,載子為電子;吸附氟原子的系統,載子為電洞。透過電荷轉移的現象知,鹼金屬與滷素等吸附原子,跟矽的鍵結絕大部分以離子鍵型式呈現;而彼此軌域重疊的部分,說明有少部分來自於共價鍵的鍵結貢獻。
Despite the popularity of grapheme research in recent years, silicon is still the main material used in current semiconductor industries. From a more industrial point of view, the research on silicon based nanostructure paves a more practical development path for doth compatibility and economic reasons. The electronic structures of ASiNRs adsorbed with alkali metals and halogen elements are studied using the density functional theory based on screened exchange local density approximation method. The most preferable adsorption sites are found to be hollow and top sites for alkali metals and halogen elements, respectively. As the ASiNRs remains completely flat, the maximum concentration of adsorption can reach 16.67%. All the relaxed systems with adsorbed atoms exhibit metallic or semiconducting behavior with strongly bonded Li, Na, K, Rb or F, Cl, Br, I atoms accompanied by an appreciable electron transfer from the Li, Na, K, Rb adatom to silicene nanoribbons or from the silicene nanoribbons to the F, Cl, Br, I. There are two types of charge carriers for the purpose of conducting. For the system with the alkali metals, the electrons work as the charge carrier. As to the system with halogen elements, the charge carriers are the electron holes. From the study on charge transfer, the adatoms can mostly bond with silicon by ionic bonds. Evidently, the valence bonds have their minor contributions due to the overlapping of orbital.
Keywords: alkali、halogen、ASiNRs
[1] Novoselov, Kostya S., et al. "Electric field effect in atomically thin carbon films." science 306.5696 (2004): 666-669.
[2] Zhang, Yuanbo, et al. "Experimental observation of the quantum Hall effect and Berry's phase in graphene." Nature 438.7065 (2005): 201-204.
[3] Berger, Claire, et al. "Electronic confinement and coherence in patterned epitaxial graphene." Science 312.5777 (2006): 1191-1196.
[4] Morozov, S. V., et al. "Giant intrinsic carrier mobilities in graphene and its bilayer." Physical review letters 100.1 (2008): 016602.
[5] Novoselov, K. S. A., et al. "Two-dimensional gas of massless Dirac fermions in graphene." nature 438.7065 (2005): 197-200.
[6] Mermin, N. David. "Crystalline order in two dimensions." Physical Review 176.1 (1968): 250.
[7] Le Doussal, Pierre, and Leo Radzihovsky. "Self-consistent theory of polymerized membranes." Physical review letters 69.8 (1992): 1209.
[8] Fasolino, Annalisa, J. H. Los, and Mikhail I. Katsnelson. "Intrinsic ripples in graphene." Nature materials 6.11 (2007): 858-861.
[9] Meyer, Jannik C., et al. "The structure of suspended graphene sheets." Nature 446.7131 (2007): 60-63.
[10] Nakada, Kyoko, et al. "Edge state in graphene ribbons: Nanometer size effect and edge shape dependence." Physical Review B 54.24 (1996): 17954.
[11] Barone, Verónica, Oded Hod, and Gustavo E. Scuseria. "Electronic structure and stability of semiconducting graphene nanoribbons." Nano letters 6.12 (2006): 2748-2754.
[12] Son, Young-Woo, Marvin L. Cohen, and Steven G. Louie. "Energy gaps in graphene nanoribbons." Physical review letters 97.21 (2006): 216803.
[13] Hod, Oded, et al. "Enhanced half-metallicity in edge-oxidized zigzag graphene nanoribbons." Nano letters 7.8 (2007): 2295-2299.
[14] Cervantes-Sodi, F., et al. "Edge-functionalized and substitutionally doped graphene nanoribbons: Electronic and spin properties." Physical Review B 77.16 (2008): 165427.
[15] Kan, Er-jun, et al. "Half-metallicity in edge-modified zigzag graphene nanoribbons." Journal of the American Chemical Society 130.13 (2008): 4224-4225.
[16] Wang, Min, and Chang Ming Li. "Excitonic properties of hydrogen saturation-edged armchair graphene nanoribbons." Nanoscale 3.5 (2011): 2324-2328.
[17] Son, Young-Woo, Marvin L. Cohen, and Steven G. Louie. "Half-metallic graphene nanoribbons." Nature 444.7117 (2006): 347-349.
[18] Novikov, D. S. "Transverse field effect in graphene ribbons." Physical review letters 99.5 (2007): 056802.
[19] Ritter, C., S. S. Makler, and A. Latgé. "Energy-gap modulations of graphene ribbons under external fields: a theoretical study." Physical Review B 77.19 (2008): 195443.
[20] Raza, Hassan, and Edwin C. Kan. "Armchair graphene nanoribbons: Electronic structure and electric-field modulation." Physical Review B 77.24 (2008): 245434.
[21] Ding, Yi, and Jun Ni. "Electronic structures of silicon nanoribbons." Applied Physics Letters 95.8 (2009): 083115.
[22] Houssa, Michel, et al. "Electronic Properties of Silicene: Insights from First-Principles Modeling." Journal of The Electrochemical Society 158.2 (2011): H107-H110.
[23] Rurali, Riccardo, and Nicolas Lorente. "Metallic and semimetallic silicon<100> nanowires." Physical review letters 94.2 (2005): 026805.
[24] Fagan, S. B., et al. "Stability investigation and thermal behavior of a hypothetical silicon nanotube." Journal of Molecular Structure: THEOCHEM 539.1 (2001): 101-106.
[25] Castrucci, P., et al. "Silicon nanotubes: Synthesis and characterization." Thin Solid Films 508.1 (2006): 226-230.
[26] Cahangirov, Seymur, et al. "Two-and one-dimensional honeycomb structures of silicon and germanium." Physical review letters 102.23 (2009): 236804.
[27] Le Lay, G., et al. "Physics and chemistry of silicene nano-ribbons." Applied Surface Science 256.2 (2009): 524-529.
[28] Vogt, Patrick, et al. "Silicene: compelling experimental evidence for graphenelike two-dimensional silicon." Physical review letters 108.15 (2012): 155501.
[29] Takeda, Kyozaburo, and Kenji Shiraishi. "Theoretical possibility of stage corrugation in Si and Ge analogs of graphite." Physical Review B 50.20 (1994): 14916.
[30] Durgun, Engin, Sefaattin Tongay, and Salim Ciraci. "Silicon and III-V compound nanotubes: structural and electronic properties." Physical Review B 72 (2005) 075420.
[31] Cahangirov, S., M. Topsakal, and S. Ciraci. "Armchair nanoribbons of silicon and germanium honeycomb structures." Physical Review B 81.19 (2010): 195120.
[32] Li, Hong, et al. "High performance silicene nanoribbon field effect transistors with current saturation." The European Physical Journal B 85.8 (2012): 274.
[33] Ma, Ling, et al. "Structural and electronic properties of substitutionally doped armchair silicene nanoribbons." Physica B: Condensed Matter 425 (2013): 66-71.
[34] G. Kresse and J. Furthmüller."Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set" Physical Review B 54(1996):11169
[35] Bader, Richard FW. "A quantum theory of molecular structure and its applications." Chemical Reviews 91.5 (1991): 893-928.
[36] Henkelman, Graeme, Andri Arnaldsson, and Hannes Jónsson. "A fast and robust algorithm for Bader decomposition of charge density." Computational Materials Science 36.3 (2006): 354-360.
[37] Sivek, Jozef, et al. "Adsorption and absorption of boron, nitrogen, aluminum, and phosphorus on silicene: Stability and electronic and phonon properties." Physical Review B 87.8 (2013): 085444.
[38] Pullman, D. P., et al. "Reactivity of Fluorinated Si (100) with F2." The Journal of Physical Chemistry B 105.2 (2001): 486-496.
[39] Buriak, Jillian M. "Organometallic chemistry on silicon and germanium surfaces." Chemical reviews 102.5 (2002): 1271-1308.
[40] Elias, D. C., et al. "Control of graphene's properties by reversible hydrogenation: evidence for graphane." Science 323.5914 (2009): 610-613.
[41] Lalmi, Boubekeur, et al. "Epitaxial growth of a silicene sheet." Applied Physics Letters 97.22 (2010): 223109.
[42] Gao, Nan, Wei Tao Zheng, and Qing Jiang. "Density functional theory calculations for two-dimensional silicene with halogen functionalization." Physical Chemistry Chemical Physics 14.1 (2012): 257-261.
[43] Sahin, Hasan, and Francois M. Peeters. "Adsorption of alkali, alkaline-earth, and 3 d transition metal atoms on silicene." Physical Review B 87.8 (2013): 085423.
校內:2021-02-02公開