| 研究生: |
粘孝先 Nien, Hsiau-Hsian |
|---|---|
| 論文名稱: |
軟磁錳鋅鐵氧鐵芯鐵損之分析 Core Loss Analysis of MnZn Soft Ferrite Core |
| 指導教授: |
梁從主
Liang, Tsorng-Juu 陳建富 Chen, Jiann-Fuh |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2007 |
| 畢業學年度: | 95 |
| 語文別: | 英文 |
| 論文頁數: | 113 |
| 中文關鍵詞: | 渦流損失 、切換式電源供應器 、軟磁錳鋅鐵氧鐵芯 、電阻係數 、等效電路 |
| 外文關鍵詞: | MnZn soft ferrite cores, eddy-current losses, resistivity, equivalent lumped circuit, switching-mode power supplies |
| 相關次數: | 點閱:94 下載:9 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
磁性元件的功率損失仍然為切換式電源供應器功率損失的主要來源,因此為追求更高性能與轉換效率的切換式電源供應器,磁性材料與磁性元件的研究與改進是一項重要的課題。軟磁錳鋅鐵氧鐵芯,具備高的電阻係數、初導磁率、飽和磁通密度、居里溫度及低的鐵損等優點,因此廣泛運用在切換式電源供應器上。目前切換式電源供應器的切換頻率主要仍以500 kHz以下為主,在此頻率範圍的錳鋅鐵氧鐵芯損失主要為磁滯損與渦流損,當切換頻率低於100 kHz時,磁滯損為磁性元件損失的主要來源,而當切換頻率提高到100 kHz至500 kHz後,渦流損失變成磁性元件損失的重要來源。
本論文主旨為研究軟磁錳鋅鐵氧磁體鐵芯。論文首先以二階段式的田口直交表實驗法製備軟磁錳鋅鐵氧鐵芯,藉由製程控制與改變多種摻雜物的濃度,提高錳鋅鐵氧磁體電阻係數,研製鐵芯及試片,並應用此鐵芯繞製成電感,做導磁率與阻抗量測。再者,經由磁性元件的研製、試片電阻率及元件電與磁特性測量,提出以等效電路觀念與方法,利用阻抗(導納)軌跡分析,計算此等效電路上各元件参數,如此可簡單且有效地分析錳鋅鐵氧多晶磁性材料與元件其相關電與磁性能。
最後文中提出一個估算磁性元件渦流損失的計算方法。影響渦流損失的變因大致包含鐵芯的大小、形狀、工作頻率、感應磁通密度與鐵芯電阻係數等。但,對多晶結構的錳鋅鐵氧磁體鐵芯而言,晶粒的大小決定渦流路徑的長短,亦即影響渦流損的大小,因此本文將錳鋅鐵氧磁體鐵芯微結構中晶粒的平均半徑導入做為一項參數。除此之外,為了簡化量測方式,利用外加電流為參數取代感應磁通密度,推導適合多晶結構的錳鋅鐵氧磁體鐵芯的渦流損失估算公式。所以在實務操作上,電力電子工程師即可簡單的以具電流探棒之示波器測得工作電流值,估算磁性元件在此操作模式下的渦流損,設定適合電路最佳的切換頻率。
This dissertation presents a study of MnZn soft ferrite cores for power converters. The core losses of magnetic devices are the major source of power dissipation in switching-mode power supplies (SMPSs). Therefore, the study and improvement of magnetic materials as well as inductive devices are important issues in the pursuit of higher conversion efficiency. Due to the characteristics of high resistivity, high permeability, sufficient magnetic flux density, high Curie temperature, and low loss, MnZn soft ferrite cores are extensively used for the magnetic devices in power converters. At present, the switching frequency of the SMPS is generally below 500 kHz. Within this frequency range, the dissipation of the ferrite core mostly comes from hysteresis and eddy-current losses. The eddy-current loss plays a critical role at the 100-500 kHz frequency, whereas the amount of hysteresis loss dominates the core loss of magnetic devices below 100 kHz.
This study firstly prepares high-resistivity MnZn soft ferrite cores using a two-stage Taguchi orthogonal array method. The first stage involves the use of processing control and the concentrations of various additives to prepare high-bulk-resistively sintered cores and discs; these cores are then made into the toroidal inductors. Afterwards, based on the production of magnetic devices and the measurements of bulk resistivity, and electrical and magnetic properties of the samples, an equivalent lumped-circuit method is presented for examining the relationship between material and electrical properties. The equivalent lumped circuit, combined with equivalent lumped resistances and capacitance, is applied to investigate the effect of microstructure on electrical and magnetic properties of the ferrite cores. The values of lumped resistances and capacitance are determined by analyzing the admittance loci of the sintered samples.
Furthermore, a new estimation model for the eddy-current loss of polycrystalline ferrite cores is proposed. The factors that cause such loss include the shape and size of core, driving frequency, induced magnetic flux density, and the resistivity of the material. Apart from these factors, for the polycrystalline MnZn soft ferrite cores, the grain size determines the length of the eddy path, which affects the amount of eddy-current loss. Therefore, to enhance calculation accuracy, the mean radius of the grain is taken as a parameter to deduce a new estimation model of the MnZn ferrite core. In addition, to simplify measurements, the driving current, as another parameter, replaces the induced magnetic flux density. As a result, a power electronics engineer can practically use an oscilloscope with current probe to measure the operating current and simultaneously obtain the eddy-current loss of magnetic devices, and therefore determine the appropriate switching frequency for the SMPS.
[1] W. G. Hurley, M. C. Duffy, S. O'Reilly, and S. C. O'Mathuna, “Impedance formulas for planar magnetic structures with spiral windings,” Power Electronics Specialists Conference, 1997. PESC '97, vol. 1, June 1997 pp. 627- 633.
[2] S. Matsumoto, T. Yachi, H. Horie, and Y. Arimoto, “A novel high-speed quasi-SOI power MOSFET with suppressed parasitic bipolar effect fabricated by reversed silicon wafer direct bonding,” Electron Devices Meeting, Dec. 1996, pp. 949- 951.
[3] C. T. Lie, P. C. Kuo, A.C. Sun, C. Y. Chou, S.C. Chen, I. J. Chang, T. H. Wu, and J. W. Chen, “Effects of Mg doping and sintering temperature on the magnetoresistance of sintered Fe3O4 ferrites,” IEEE Trans. Magn. vol. 39, issue 5, part 2, Sept. 2003, pp. 2800 -2802.
[4] M. I. Rosales, O. Ayala-Valenzuela, and R. Valenzuela, “Microstructure dependence of AC magnetic properties in Mn-Zn ferrites,” IEEE Trans. Magn., vol. 37, no. 4, July, 2001, pp. 2373-2376.
[5] G. Jain, B. Das, and S. Kumari, “Effect of doping a Mn-Zn ferrite with GeO2and SnO2,” IEEE Trans. Magn., vol. 16, Issue 6, Nov. 1980, pp. 1428-1433.
[6] K. Ishino and Y. Narumiya, “Development of magnetic ferrites: Control and applications of losses,” Cer. Bull., vol. 66, pp. 1469-1474, 1987.
[7] T. J. Liang, H. H. Nien, and J. F. Chen, “Investigating the Characteristics of Cobalt-Substituted MnZn Ferrites by Equivalent Electrical Elements,” IEEE Trans. Magn. (accepted)
[8] C. Kittel, Introduction to Solid State Physics, Wiley, New York, 1996.
[9] J. D. Jackson, Classical Electrodynamics, Wiley, New York, 1999.
[10] Kotaro Honda, Magnetic properties of matter, Syokwabo and Company.
[11] E. C. Snelling, Soft Ferrites Properties and Applications, second edition, Butterworths, 1988.
[12] G. F. Dionne, “A review of ferrites for microwave applications,” Proceedings of the IEEE, vol. 63, Issue 5, May 1975, pp. 777-789.
[13] Helmut Föll, Defects in Crystals, university of Kiel.
[14] M. J. Tung, W. C. Chang, C. S. Liu, T. Y. Liu, C. J. Chen, and T. Y. Tseng, “Study of loss mechanisms of Mn-Zn ferrites in the frequency from 1 MHz to 10 MHz,” IEEE Trans. Magn., vol. 29, Issue 6, Part 2, Nov. 1993, pp. 3526-3528.
[15] J. E. Bauerle, “Study of solid electrolyte polarization by a complex admittance method,” J. Phys. Chem. Solids, Pergamon Press, vol. 30, 1969, pp2657-2670.
[16] N. M. Beekmans and L.Heyne, “Correlation between impedance, microstructure, and composition of calcia-stabilized zirconia,” Eletrochimica, Acta, 21, 1976, pp. 303-310.
[17] T. van Dijk and A. J. Burggraaf, “Grain boundary effects on ionic conductivity in ceramics GdxZr1-xO2-(x/2) solid solutions,” Phys. Stat. Sol. (a), 1981, 63, pp.229-240.
[18] J. Ross Macdonald, Impedance spectroscopy, John Wiley & Sons, 1987.
[19] TDK, Inc., TDK Ferrite Cores for power Supply and EMI/RFI Filter, 1990.
[20] Ronald F. Sohoo, Theory and application of ferrites, Prentice Hall, 1960, pp. 79-80.
[21] D. I. Paul, “General theory of the coercive force due to domain wall pinning,” J. Appl. Phys. 53[3], 1982, pp. 1649-1654.
[22] J. Smit and H. P. J. Wijn, Ferrites, John Wiley & Sons, New York, 1959.
[23] Y. Sakaki, “An approach estimating the number of domain walls and eddy current losses in grain-oriented 3% Si-Fe tape wound cores,” IEEE Trans. Magn., vol. MAG-16, 1980, pp. 569-572.
[24] H. Saotome and Y. Sakaki, “Iron loss analysis of Mn-Zn ferrite cores,” IEEE Trans. Magn., vol. 33, Issue 1, Jan. 1997, pp. 728-734.
[25] J. F. Janak, “Dynamics of diffusion-damped domain wall motion," Journal of Applied
Physics, vol. 34, no. 4, 1963, pp. 1119-1120.
[26] D. Park, “Magnetic rotation in a polycrystalline ferrite," Phys. Rev., vol. 97, no. 1, 1955, pp. 60-66.
[27] D. Stoppels, “Developments in soft magnetic power ferrites,” J. Magn. Magn. Mater., 160(1996), pp.323-328.
[28] U. Wagner, “Aspects of the correlation between raw material and ferrite properties,” J. Magn. Magn. Mater. Pt I, 4, 116 (1977).
[29] H. H. Nien, T. J. Liang, C. K. Huang, and S. K. Changchien, “Implementation of low loss Mn-Zn Ferrite cores for power electronics applications,” IEEE Power India Conference, 2006.
[30] Y. H. Huang, Y. T. Chien, and Y. C. Ko, “Influence on mole ratio of CaO to SiO2 on magnetic properties and grain size of Mn-Zn ferrites,” J. Mater. Sci. Letter, 131, 1994, pp. 1416-1418.
[31] A. D. P. Rao, B. Ramesh, P. R. M. Rao, and S. B. Raju, “Magnetic and microstructure properties of Sn/Nb substituted Mn-Zn ferrires,” J. Alloys and Compounds 282, 1999, pp.268-273.
[32] A. Zinidarisic, M. Limpel, and M. Drofenik, “Effect of dopants on the magnetic properties of MnZn ferrites for high frequency power supplies,” IEEE Trans. Magn. vol. 31, no. 2, 1995, pp. 950-953.
[33] American Supplier Institute, Inc., Orthogonal Arrays and Linear Graphs: Tools for Quality Engineering, ASI, 1987.
[34] American Supplier Institute, Inc., Taguchi Methods for Problem Solving, 4-Day Workshop, American Supplier Institute, ASI, 1992.
[35] American Supplier Institute, Inc., Twelfth Annual Taguchi Symposium, Case Studies Tutorials, ASI, 1994.
[36] D. C. Montgomery, Design and Analysis of Experiments, Wiley, New York, 1991.
[37] A. Withop, “Maganese-Zinc ferrite processing, properties and recording perfor- mance,” IEEE Trans. Magn., vol. Mag-14, no. 5, Sep. 1978.
[38] R. J. Willey, “Effect of post sinter cooling rates on Mn-Zn ferrites,” J. Magn. 19, pp. 126-129.
[39] G. E. Schaller and J. Ings, “New processing techniques yields large ferrite compo- nents,” IEEE Pulse Power Conf. 2, 1999, pp1653-1655.
[40] E. Hirota, T. Mihara, A. Ikeda, and H. Chiba, “Hot-pressed Mn-Zn ferrite for magnetic recording heads,” IEEE Trans. Magn. vol. 7, Issue 3, Sep. 1971, pp. 337-341.
[41] I. N. Lin, R.Mishra, and G. Thomas, “CaO segregation in MnZn ferrite,” IEEE Trans. Magn., vol. 18, Issue 6, Nov.1982, pp.1544-1546.
[42] U. Konig, “Substitutions in manganese zinc-ferrites,” Appl. Phys.,vol. 4, 1974, pp. 237-242.
[43] K. I. Arshak, D. P. Egan, and K. Phelan, “Using statistical design of experiment to investigate the effect of firing parameters on the electrical and magnetic properties of Mn-Zn ferrite,” Microelectronics Reliability , 42(7), 2002, pp. 1127-1132.
[44] E. Otsuki, S.Yamada, T. Otsuka, K. Shoji, and T. Sato, “Microstructure and physical properties of Mn-Zn ferrites for high-frequency power supplies,” J. Appl. Phys. 69 (1991), pp. 5942-5944.
[45] M. Drofenik and A. Znidarsic, “Highly resistive grain boundaries in doped MnZn ferrites for high frequency power supplies,” J. Appl. Phys. 82 (1997), pp. 333-340.
[46] G. M. Jeong, J. Choi, and S. S. Kim, “Abnormal Grain Growth and Magnetic Loss in Mn-Zn Ferrites Containing CaO and SiO2,” IEEE Trans. Magn., vol. 36, no.5, Sep. 2000, pp. 3405-3407.
[47] J. Fleig, P. Pham, P. Sztulzaft, and J. Maier , “Inhomogeneous current distributions at grain boundaries and electrodes and their impact on the impedance,” Solid State Ionics, vol. 113-115, 1 Dec. 1998, pp. 739-747.
[48] S. Rodewald, J. Fleig, and J. Maier , “The distribution of grain boundary resistivities in SrTiO3 polycrystals: a comparison between spatially resolved and macroscopic measurements,”Journal of the European Ceramic Society, vol. 21, Issues 10-11, 2001, pp. 1749-1752.
[49] J. Fleig and J. Maier , “The impedance of ceramics with highly resistive grain boundaries: validity and limits of the brick layer model,” Journal of the European Ceramic Society, vol. 19, Issues 6-7, June 1999, pp. 693-696.
[50] S. Rodewald, J. Fleig, and J. Maier , “Measurement of conductivity profiles in acceptor-doped strontium titanate,” Journal of the European Ceramic Society, vol. 19, Issues 6-7, June 1999, pp. 797-801.
[51] J. Fleig, “The influence of non-ideal microstructures on the analysis of grain boundary impedances,” Solid State Ionics, vol. 131, Issues 1-2, 1 June 2000, pp. 117-127.
[52] J. Fleig, “The grain boundary impedance of random microstructures: numerical simulations and implications for the analysis of experimental data,” Solid State Ionics, vol. 150, Issues 1-2, 1 Sep. 2002, pp. 181-193.
[53] A. Fujita and S. Gotoh, “Temperature dependence of core loss in Co-substituted MnZn ferrites,” J. Appl. Phys., vol. 93, no. 10, 2003, pp. 7477-7479.
[54] Gerald F. Dionne, “Magnetic Relaxation and Anisotropy Effects on High-Frequency Permeability,” IEEE Trans. Magn. vol. 39, no. 5, 2003, pp. 3121-3126.
[55] J. E. Bauerle, “Study of solid electrolyte polarization by a complex admittance method,” J. Phys. Chem. Solids, Pergamon Press, vol. 30, 1969, pp. 2657-2670.
[56] J. L. Snoek, “Dispersion and absorption in magnetic ferrites at frequencies above one magecycle,” Physica XIV, vol. 4, 1948, pp. 207-217.
[57] R. S. Weisz, “Magnetic anisotropy constants of ferromagnetic spinels,” Phys. Rev., vol. 96, no. 3, 1954, pp. 800-801.
[58] K. W. E. Cheng, W. S. Lee, C. Y. Tang, and L. C. Chan, “Dynamic modeling of magnetic materials for high frequency applications,” J. Mat. Proc. Tech. 139, 2003, pp.578-584.
[59] S. Yamada and E. Otsuki, “Analysis of eddy current loss in Mn-Zn ferrites for power supplies,” IEEE. Trans. Magn., vol. 31, Issue 6, Nov. 1995, pp. 4062-4064.
[60] E. Cardelli, L. Fiorucci, and E. Della Torre, “Estimation of MnZn ferrite core losses in magnetic components at high frequency,” IEEE. Trans. Magn., vol. 37, Issue 4, Jul. 2001, pp. 2366-2368.
[61] M. Maryško and S. Krupicka, “Calculation of the eddy current loss in a ferrite core,” J. Magn. Magn. Mater., vol. 157, May 1996, pp. 469-470.
[62] W. H. Jeong, Y. H. Han, and B. M. Song, “Effects of grain size on the residual loss of Mn-Zn ferrites,” J. Appl. Phys. vol. 91, no. 10, 2002, pp. 7619-7621.
[63] H. F. Cheng, “Modeling of electrical response for semiconducting ferrite,” J. Appl. Phys. 56 (6). 15, Sep. 1984, pp. 1831-1837.
[64] T. J. Liang and K. C. Tseng, “Analysis of integrated boost-flyback set-up converter” , IEE Proceedings- Electric Power Applications, vol. 152, no. 2, Mar. 2005, pp. 217-225.
[65] C. G. Koops, “On the dispersion of resistivity and dielectric constant of some semiconductors at audio frequencies,” Phys. Rev., vol. 83-1, 1951, pp.121-124.
[66] Y. Sakaki and T. Sato, “Large signal eddy current losses beyond 100kHz,” IEEE Trans. Magn., vol. 20, Issue 5, Sep. 1984, pp. 1487- 1489.
[67] P. J. van der Zaag, “New views on the dissipation in soft magnetic ferrites,” J. Magn. Magn. Mater., 196-197 (1999), pp. 315-319.
[68] K. W. E. Cheng, W. S. Lee, C. Y. Tang, and L. C. Chan, “Dynamic modeling of magnetic materials for high frequency applications,” J. Mat. Proc. Tech. 139, 2003, pp.578-584.