簡易檢索 / 詳目顯示

研究生: 陳長智
Chen, Chang-Chih
論文名稱: 具耦合電感之新型七階換流器
A Novel Seven-Level Inverter with Coupled-Inductor
指導教授: 陳建富
Chen, Jiann-Fuh
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 75
中文關鍵詞: 七階換流器耦合電感電壓平衡
外文關鍵詞: seven-level inverter, coupled-inductor, voltage-balancing
相關次數: 點閱:77下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文提出一新型具耦合電感七階換流器,此電路具有低總諧波失真率之多階輸出,利用電容疊接技術以及耦合電感技術使輸出產生七種輸出電壓階。輸入端僅使用單一電源以及兩個輸入電容,故只要控制兩顆輸入電容的能量釋放給予負載是相同,便可使電容電壓達到平衡,不需額外的平衡電路。少了平衡電路,開關元件數目可以大幅減少以及在開關訊號控制上變得較為簡易。
    本文設計一輸入360 V直流電壓、輸出380 V交流電壓及輸出功率3 kW之實作電路。實驗結果證明,該七階換流器架構之可行性。

    This thesis proposes a novel single-phase seven-level inverter, which produce three levels of voltage variations, hence the seven-level output is achieved. The proposed inverter uses only one DC source and two capacitors. The time period of energy storing and releasing are identical in one switching cycle, Thus capacitor voltage is balanced without voltage-balancing circuit. This is a distinct advantage in comparison with other conventional seven-level structures, which often use three or more capacitors that lead to voltage-unbalancing of capacitors. Simple control strategy is adopted.
    The proposed topology has the advantage of low voltage harmonic distortion, absence of voltage-balancing circuit, less input capacitors, smaller low pass filter size, and low switch voltage stress.Experimental results obtained from a 360 V input voltage, 380 Vrms output voltage, and 3 kW output power prototype circuit was presented to verify the system performance.

    目錄 中文摘要 I 英文摘要 II 誌謝 III 目錄 IV 表目錄 VII 圖目錄 VIII 第一章 緒論 1 1.1 研究背景與動機 1 1.2 研究內容與目的 2 1.3 論文大綱 3 第二章 多階換流器之架構與分析 4 2.1 前言 4 2.2 多階換流器介紹 5 2.2.1 二極體箝位式多階換流器 5 2.2.2 飛輪電容式多階換流器 7 2.2.3 串接式多階換流器 10 2.2.4 簡易型多階換流器 11 2.2.5 具電壓平衡電路之五階二極體箝位式換流器 14 2.2.6 具耦合電感之五階換流器 17 2.2.7 電容疊階之五階換流器 18 2.3 正弦脈波寬度調變切換技術 20 第三章 具耦合電感之新型七階換流器 22 3.1 前言 22 3.2 新型七階換流器電路架構之剖析與探討 23 3.2.1 新型七階換流器電路概念 23 3.2.2 新型七階換流器電路架構 24 3.2.3 耦合電感設計原則 28 3.2.4 新型七階換流器模式分析 30 3.2.5 論文架構與傳統架構比較 42 3.2.6 所提架構之開關與二極體電壓應力 43 3.3 換流器等效電阻分析 44 3.4 相位脈波寬度調變 51 第四章 模擬及實驗結果 56 4.1前言 56 4.2模擬結果 58 4.3實驗結果 60 第五章 結論與未來展望 70 5.1 結論 70 5.2 未來展望 71 參考文獻 72 表目錄 表2.1 三階二極體箝位式換流器之操作模式 6 表2.2 三階飛輪電容式換流器之操作模式 8 表2.3 三階全橋式換流器之操作模式 10 表2.4 簡易型五階換流器一之操作模式 12 表2.5 簡易型五階換流器二之操作模式 13 表2.6 具耦合電感之五階換流器之操作模式 18 表2.7 電容疊接之五階換流器 19 表3.1 初始新型七階換流器之開關導通狀態 25 表3.2 新型七階換流器之開關導通狀態 30 表3.3 所提架構與傳統架構比較表 42 表3.4 功率開關與飛輪二極體之電壓應力 43 表4.1 電路規格表 57 表4.2 本文架構之元件規格及參數 57 圖目錄 圖2.1 三階二極體箝位式換流器 6 圖2.2 五階二極體箝位式換流器 7 圖2.3 三階飛輪電容式換流器 8 圖2.4 五階飛輪電容式換流器 9 圖2.5 三階全橋式換流器 10 圖2.6 五階串接式換流器 11 圖2.7 簡易型五階換流器一 12 圖2.8 簡易型五階換流器二 13 圖2.9 簡易型七階換流器 14 圖2.10 具電壓平衡電路之五階二極體箝位式換流器 15 圖2.11 電壓平衡電路(a)模式一 (b)模式二 16 圖2.12 具耦合電感之五階換流器 17 圖2.13 電容疊接之五階換流器 19 圖2.14 正弦脈波寬度調變法(SPWM)方塊圖 20 圖2.15 正弦脈波寬度調變法示意圖 21 圖3.1 新型七階換流器電路架構概念 23 圖3.2 新型初始七階換流器電路架構 24 圖3.3 輸出電壓階失真波形 25 圖3.4 輸出弦波電壓失真波形 26 圖3.5 新型七階換流器電路架構 27 圖3.6 輸出電壓階波形 27 圖3.7 耦合電感線路圖 28 圖3.8 新型多階換流器電路架構之模式一 32 圖3.9 新型多階換流器電路架構之模式二 33 圖3.10 新型多階換流器電路架構之模式三 34 圖3.11 新型多階換流器電路架構之模式四 35 圖3.12 新型多階換流器電路架構之模式五 36 圖3.13 新型多階換流器電路架構之模式六 37 圖3.14 新型多階換流器電路架構之模式七 38 圖3.15 新型多階換流器電路架構之模式八 39 圖3.16 新型多階換流器電路架構之模式九 40 圖3.17 新型多階換流器電路架構之模式十 41 圖3.18 新型七階換流器v12=3Vdc/2及Vdc切換狀態下等效電路 44 圖3.19 v12=3Vdc/2及Vdc切換狀態下功率分配圖 46 圖3.20 新型七階換流器v12=Vdc及Vdc/2切換狀態下等效電路 47 圖3.21 v12=Vdc及Vdc/2切換狀態下功率分配圖 48 圖3.22 新型七階換流器v12= Vdc/2及0切換狀態下等效電路 49 圖3.23 相位配置脈波寬度調變控制法 52 圖4.1 新型七階換流器電路 56 圖4.2 新型七階換流器模擬電路 58 圖4.3 v12及vo之模擬波形圖 59 圖4.4 本論文所提電路架構 60 圖4.5 輸出功率360 W下v12、vo、io之實測波形 61 圖4.6 輸出功率900 W下v12、vo、io之實測波形 61 圖4.7 輸出功率1350 W下v12、vo、io之實測波形 62 圖4.8 輸出功率1800 W下v12、vo、io之實測波形 62 圖4.9 輸出功率2250 W下v12、vo、io之實測波形 63 圖4.10 輸出功率3000 W下v12、vo、io之實測波形 63 圖4.11 輸出功率360 W下io、vC1、vC2之實測波形 64 圖4.12 輸出功率900 W下io、vC1、vC2之實測波形 64 圖4.13 輸出功率2250 W下io、vC1、vC2之實測波形 65 圖4.14 輸出功率3000 W下io、vC1、vC2之實測波形 65 圖4.15 開關電壓應力vds7、vds8、vds10、vds9之實測波形 66 圖4.16 總諧波失真率圖(Po=3 kW, THD=0.85%) 66 圖4.17 總諧波失真率圖(Po=360 W, THD=0.97%) 67 圖4.18 vge1、vge2、vge3、vge4之實測波形圖 67 圖4.19 vge1、vge2、vge5、vge6之實測波形圖 68 圖4.20 vge1、vge2、vge8、vge10之實測波形圖 68 圖4.21 vge1、vge2、vge7、vge9之實測波形圖 69 圖4.22 新型七階換流器效率圖 69 圖5.1 新型九階換流器電路圖 71

    [1] Fang Peng, Wei Qian, and Dong Cao, “Recent advances in multilevel converter/Inverter topologies and applications,” International Power Electronics Conference (IPEC)., pp. 492 - 501, Jun. 2010.
    [2] Javad Gholinezhad and Reza Noroozian, “Application of cascaded h-bridge multilevel inverter in DTC-SVM based induction motor drive,” 3rd Power Electronics and Drive Systems Technology (PEDSTC)., pp. 127 - 132, Feb. 2012.
    [3] Zhong Du and Burak Ozpineci, “Dc–ac cascaded h-bridge multilevel boost inverter with no inductors for electric/hybrid electric vehicle applications,” IEEE Trans. Ind. Appl., vol. 45, no. 3, pp. 963 - 970, Jun. 2009.
    [4] Nasrudin Rahim, Krismadinata Chaniago, and Jeyraj Selvaraj, “Single-phase seven-level gid-connected inverter for photovoltaic system,” IEEE Trans. Ind. Electron., vol. 58, no. 6, pp. 225 - 230, Jun. 2011.
    [5] Gerardo Ceglia, Víctor Guzmán, Carlos Sánchez, Fernando Ibáñez, Julio Walter, and María Giménez, “Simulation of simplified seven level multilevel converter circuit,” 13th International Power Electronics and Motion Control Conference (EPE-PEMC 2008)., pp. 268 - 274, Sep. 2008.
    [6] Krismadinata Chaniago, Nasrudin Abd Rahim, and Jeyraj Selvaraj, “Novel fundamental-frequency-modulated modified h-bridge single- phase seven-level inverter for stand-alone photovoltaic system.,” IEEE First Conference on Clean Energy and Technology., pp. 225 - 230, Jun. 2011.
    [7] Krismadinata Chaniago, Nasrudin Abd Rahim, and Jeyraj Selvaraj, “Single-phase seven-level voltage source inverter with low switching frequency,” IEEE Region 10 Conference., pp. 1 - 5, Jan. 2009.
    [8] 王瑞榮, 陳建富, 許文謙,“具電壓平衡電路之新型七階變頻器,” 第十三屆中國電工技術電力電子研討會.
    [9] Gerardo Ceglia , Víctor Guzmán, Carlos Sánchez, Fernando Ibáñez, Julio Walter, María Giménez, and Jeyraj Selvaraj. “Simulation of simplified seven level multilevel converter circuit,” 13th International Power Electronics and Motion Control Conference., pp. 268 - 274, Sep. 2008.
    [10] K. Sano and H. Fujita, “Novel fundamental-frequency-modulated modified h-bridge single-phase seven-level inverter for stand-alone photovoltaic system.,” IEEE First Conference on Clean Energy and Technology., pp. 225 - 230, Jun. 2011.
    [11] Nasrudin Abd. Rahim, Mohamad Fathi, Mohamad Elias, and Wooi Ping Hew, “Transistor-clamped h-bridge based cascaded multilevel inverter with new method of capacitor voltage balancing,” IEEE Trans. Ind. Electron., vol. 60, no. 8, pp. 2943 - 2956, Aug. 2013.
    [12] Anshuman Shukla, Arindam Ghosh, and Avinash Joshi, “Capacitor voltage balancing schemes in flying capacitor multilevel inverters,” Power Electronics Specialists Conference, pp. 2367 - 2372, Jun. 2007.
    [13] Kui Wang, Yongdong Li, and Zedong Zheng, “Voltage balancing control and experiments of a novel modular multilevel converter,” Energy Conversion Congress and Exposition, pp. 3691 - 3696, Sep. 2010.
    [14] K. Sano and H. Fujita, “Voltage-balancing circuit based on a resonant switched-capacitor converter for multilevel inverters,” IEEE Trans. Ind. Appl., vol. 44, no. 6, pp. 1768-1776, Nov. 2008.
    [15] K. Hasegawa and H. Akagi, “A new dc-voltage-balancing circuit including a single coupled inductor for a five-level diode-clamped PWM inverter,” IEEE Trans. Ind. Appl., vol. 47, no. 2, pp. 841-852, Mar. 2011.
    [16] Anshuman Shukla, Arindam Ghosh, and Avinash Joshi, “Flying capacitor-based chopper circuit for dc capacitor voltage balancing in diode-clamped multilevel inverter,” IEEE Trans. Ind. Electron., vol. 57, no. 7, pp. 2249-2261, Jul. 2010.
    [17] Zeliang Shu, Xiaoqiong He, Zhiyong Wang, Daqiang Qiu, and Yongzi Jing, “Voltage balancing approaches for diode-clamped multilevel converters using auxiliary capacitor-based circuits, ” IEEE Trans. Power Electron., vol. 28, no. 5, pp. 2111-2124, May. 2013.
    [18] Jing Zhao, Yunlong Han, Xiangning He, Cheng Tan, Jun Cheng, and Rongxiang Zhao, “Multilevel Circuit Topologies Based on the Switched-Capacitor Converter and Diode-Clamped Converter,” IEEE Trans. Power Electron., vol. 26, no. 8, pp. 2127-2136, Aug. 2011.
    [19] Kenichiro Sano and Hideaki Fujita, “A new control method of a resonant switched-capacitor converter and its application to balancing of the split dc voltages in a multilevel inverter,” Power Conversion Conference, pp. 122-129, Apr. 2007.
    [20] Takumi Ito,Masamu Kamaga ,Yukihiko Sato, and Hiromichi Ohashi, “An investigation of voltage balancing circuit for dc capacitors in diode-clamped multilevel inverters to realize high output power density converters,” Energy Conversion Congress and Exposition., pp. 3675-3682, Sep. 2010.
    [21] X. Yuan and I. Barbi, “Fundamentals of a new diode clamping multilevel inverter,” Power Electronics Specialists Conference., pp. 4296-4301, Jun. 2008.
    [22] J. Rodriguez, J. S. Lai, and F. Z. Peng, “Multi-level inverter: a survey of topologies, controls, and applications,” IEEE Trans. Ind. Electron., vol.49, no. 4, pp. 724-738, Aug. 2002.
    [23] M. Marchesoni and P. Tensa, “Diode-clamped multilevel converters: a practicable way to balance dc-link voltages,” IEEE Trans. Ind. Electron., vol. 49, no. 4, pp. 752 - 765, Aug. 2002.
    [24] X. Yuan and I. Barbi, “Fundamentals of a new diode clamping multilevel inverter,” IEEE Trans. Power Electron., vol. 15, no. 4, pp. 711 - 718, Jul. 2000.
    [25] D. W. Kang, B. K. Lee, J. H. Jeon, T. J. Kim, and D. S. Hyun, “A symmetric carrier technique of CRPWM for voltage balance method of flying-capacitor multilevel inverter,” IEEE Trans. Ind. Electron., vol. 52, no. 3, pp. 879-888, Jun. 2005.
    [26] M. Khazraei, H. Sepahvand, K. A. Corzine, and M. Ferdowsi, “Active capacitor voltage balancing in single-phase flying-capacitor multilevel power converters,” IEEE Trans. Ind. Electron., vol. 59, no.2, pp. 769-778, Feb. 2012.
    [27] G. J. Su, “Multilevel dc-link inverter,” IEEE Trans. Ind. Appl., vol. 41, no. 3, pp. 848 - 854, Jun. 2005.
    [28] P. Lezana, J. Rodriguez, and D. A. Oyarzun, “Cascaded multilevel inverter with regeneration capability and reduced number of switches,” IEEE Trans. Ind. Electron., vol. 55, no. 3, pp. 1059-1066, Mar. 2008.
    [29] R. Gupta, A. Ghosh, and A. Joshi, “Switching characterization of cascaded multilevel-inverter-controlled systems,” IEEE Trans. Ind. Electron., vol. 55, no. 3, pp. 1047-1058, Mar. 2008.
    [30] R. Seyezhai and B. L. Mathur, “Hybrid cascaded h-bridge multilevel inverter for fuel cell power conditioning systems,” Universities Power Engineering Conference, pp. 1-5, Sep. 2008.
    [31] G. Ceglia, V. Guzmán, C. Sánchez, F. Ibáñez, J. Walter, and M. I. Giménez, “A new simplified multilevel inverter topology for dc–ac conversion,” IEEE Trans. Power Electron., vol. 21, no. 5, pp. 1311- 1319, Sep. 2006.
    [32] 劉偉霖,新型單相多階層換流器之研製,國立成功大學電機工程學系碩士論文,2012.
    [33] E. Babaei, S. H. Hosseini, G. B. Gharehpetian, M. Tarafdar Haque, and M. Sabahi, ”Reduction of dc voltage sources and switches in asymmetrical multilevel converters using a novel topology,” Elsevier Journal of Electric Power Systems Research, pp. 1073-1085, 2007.
    [34] H. Xiangning, A. Chen, W. Hongyang, D. Yan, and Z. Rongxiang, “Simple passive lossless snubber for high-power multilevel inverters,” IEEE Trans. Ind. Electron., vol. 53, no. 3, pp. 727-735, Jun. 2006.
    [35] C. M. Wang, C. H. Su, M. C. Jiang, and Y. C. Lin, “A ZVS-PWM single-phase inverter using a simple ZVS-PWM commutation cell,” IEEE Trans. Ind. Electron., vol. 55, no. 2, pp. 758-766, Feb. 2008.
    [36] J. Salmon, A. Knight, and J. Ewanchuk, “Single phase multi-level PWM inverter topologies using coupled inductors,” Power Electronics Specialists Conference, pp. 802-808, Jun. 2008.
    [37] J. Salmon, J. Ewanchuk, and A. M. Knight, “PWM inverters using split-wound coupled inductors,” IEEE Trans. Ind. Appl., vol. 45, no. 6, pp. 2001-2009, Nov. 2009.
    [38] D. Floricau, E. Floricau, and G. Gateau, “A novel single-phase five-level inverter with coupled inductors,” IEEE Trans. Ind. Electron., vol. 58, no. 12, pp. 5344-5351, Jul. 2011.
    [39] Y. Hinago and H. Koizumi, “A switched-capacitor inverter using series/parallel conversion with inductive load,” IEEE Trans. Ind. Electron., vol. 57, no. 8, pp. 2643-2650, Aug. 2010.
    [40] Y. Hinago and H. Koizumi, “A single-phase multilevel inverter using switched series/parallel dc voltage sources,” Energy Conversion Congress and Exposition, pp. 1962-1967, Sep. 2009.
    [41] Abdalla, J. Corda, and L. Zhang, “Multilevel dc-link inverter and control algorithm to overcome the PV partial shading,” IEEE Trans. Power Electron., vol. 28, no. 1, pp. 14-18, Jan. 2013.
    [42] Ehsan Najafi, Abdul Halim, and Mohamed Yatim, “Design and implementation of a new multilevel inverter topology,” IEEE Trans. Ind. Electron., vol. 57, no. 8, pp. 2643-2650, Aug. 2010.
    [43] Xuefeng Hu, Chunying Gong, Xiaolan, Chen xin, and Jiayan Zhang, “Analysis of topology and PWM strategy for a new multiple input and multilevel inverter,” 2nd IEEE International Symposium on Power Electronics for Distributed Generation Systems, pp. 292-294, Jun. 2010.
    [44] Won-Kyun Choi and Feel-soon Kang, “H-bridge based multilevel inverter using PWM switching function,” Telecommunications Energy Conference, pp. 1-5, Oct. 2009.

    無法下載圖示 校內:2018-07-19公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE