簡易檢索 / 詳目顯示

研究生: 洪得峻
Hung, Te-Chun
論文名稱: 具有輸入電壓高適應能力之臭氧驅動系統研究及實現
Design and Implementation of Ozone-Driven System with Enhanced Adaptive Input-Voltage Capability
指導教授: 黃世杰
Huang, Shyh-Jier
學位類別: 博士
Doctor
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 英文
論文頁數: 78
中文關鍵詞: 輸入電壓適應性諧振電路臭氧驅動電路可控之雙輸出直流轉換器
外文關鍵詞: Input voltage adaptability, resonant circuit, ozone-driven circuit, controllable dual-output converter
相關次數: 點閱:69下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 伴隨科技進步,採用高壓電源激發臭氧於清潔殺菌之應用概念,已被民生工業採用,應用場合愈趨廣泛。因此,本論文主旨即在於研發具有輸入電壓高適應能力之臭氧驅動系統,並針對控制策略、回授機制、諧振架構與應用方法,予以深入分析探討。
    本論文首先討論強化輸入電壓適應性的臭氧驅動電路架構,並經由電路改善及變壓器設計,可將輸入電壓範圍擴增,而由電路分析及硬體電路實作,均證實此電路不僅達成寬輸入電壓範圍需求,並可傳遞所需功率與達到柔性切換。其次,考量臭氧驅動系統必須仰賴充電系統以維持電能,然而傳統之定電壓及定電流方式在充電速度及放電續航力上皆有限制,因此本論文針對充電速度及放電續航力,提出一種新型充電法則,且已經由系統分析與實驗證實可達成充電效能之優化改善。
    另為了提供充電電路及驅動控制器之直流電源,本論文提出一套可控之雙輸出直流轉換器,利用整合儲能元件及控制法則,達到雙埠輸出穩定電壓,且不受負載影響。綜由上述控制策略與系統架構,本論文所設計之電路系統已具備元件整合與擴增應用範圍之優點,研究成果可作為通用型及移動式臭氧驅動系統之開發設計參考。

    With the swift progress of techniques, the concept of high voltage ozone excitation for cleaning and sterilizing is being widely utilized in industrial applications and daily lives. Based on this critical importance, this dissertation proposes an ozone-driven system with high adaptability of input voltage along with the analysis made on the control strategies, feedback mechanism, resonant configuration and application methods.
    The dissertation starts with the discussion on the enhancement of ozone-driven circuit along with a high adaptability of input voltage. This proposed circuit excels at the extension of input voltage by way of circuit improvement and transformer design. Both circuit analysis and hardware implementation validate the method in the achievement of wide input range, where the power transfer and soft-switching is confirmed as well. Next, considering that the ozone load is highly dependent on the charging system, yet the performance of charging speed and discharging endurance by the constant voltage and constant current charging mode allows for a further improvement. A new charging method is therefore proposed in this dissertation, which is verified by the system analysis and experiment in order for the optimization of performance improvement.
    As for the provision of a power source for the charging circuit and the controller of the ozone-driven system, this dissertation proposes a controllable dual-output DC converter. The dual-output voltage is generated through the integration of energy storage components with control strategies, where the completed system is found to be unaffected by connected loads. Conclusively, with the development of control strategy and system topology made in this dissertation, the completed circuit design has exhibited the merits of component integration and expansion of application areas. The outcomes gained from this dissertation are served as beneficial references for the research and development of universal and movable ozone-driven systems.

    摘要 I Abstract II 誌謝 IV Contents V List of Tables VII List of Figures VIII Symbol and Abbreviation XI Chapter 1 Introduction 1.1 Background and Motivation 1 1.2 Literature Survey 3 1.3 Contribution of Dissertation 6 1.4 Organization of Dissertation 7 Chapter 2 Circuit Analysis of Proposed Systems 2.1 Introduction 10 2.2 Ozone-Generation Mechanism 10 2.3 Design Concepts for Extension of Input-Voltage Range 12 2.3.1 Wide Input Voltage Circuit 12 2.3.2 Transformer Analysis and Design 12 2.3.3 Analysis of Modified Half-bridge Circuit 14 2.4 Analysis of Integrated Circuit for Controllable Dual-Output 16 2.5 Summary 17 Chapter 3 Design of Charging System Enhanced with Intelligent Algorithms for Ozone-Generation System 3.1 Introduction 18 3.2 Charging System Architecture 19 3.2.1 Charging Control Method 24 3.3 Wolf Pack Algorithm Application 25 3.3.1 Computation Process 26 3.4 Test Result and Analysis 28 3.5 Summary 31 Chapter 4 Design of Controllable Dual-Output Converters for Ozone-Driven Systems 4.1 Introduction 32 4.2 Operating Mode of Dual Controllable DC Converter 32 4.3 Operating Principles of Control Systems 34 4.4 Design and Analysis of Resonant Circuits 36 4.5 Experimental Results 39 4.6 Summary 47 Chapter 5 Modified Half-Bridge Inverter with Adative Input-Voltage Capability for Ozone-Driven Circuit Design 5.1 Introduction 48 5.2 Operations of Modified Half-Bridge Inverter 49 5.3 Analysis and Design of Modified Half-Bridge Inverter 54 5.4 Experimental Results 59 5.5 Summary 67 Chapter 6 Conclusions 6.1 Conclusions 69 6.2 Future Study 69 References 71

    [1] M. Golkowski, C. Golkowski, J. Leszczynski, and S. R. Plimpton,“Hydrogen-Peroxide-Enhanced Nonthermal Plasma Effluent for Biomedical Applications,” IEEE Trans. Plasma Sci., Vol. 40, No. 8, pp. 1984-1991, Aug. 2012.
    [2] M. Nur, A. Solichin, E. Kusdiayantini, and T. A. Winarni, “Ozone Production by Dielectric Barrier Discharge Plasma for Microbial Inactvation in Rice,” in Proc. IEEE ICICI-BME, Bandung, Indonesia, pp. 221-225, Nov. 2013.
    [3] J. G. Patil and T. Vijayan, “Characteristics of High-Tension-Induced Corona-Discharge Plasma in Ozone Generator Diode,” IEEE Trans. Plasma Sci., Vol. 38, No. 9, pp. 2422-2427, Aug. 2012.
    [4] I. Botvinnik, C. E. Taylor, and G. Snyder, “High-Efficiency Portable Electrostatic Air Cleaner With Insulated Electrodes,” IEEE Trans. Ind. Appl., Vol. 44, No. 2, pp. 512-516, Mar.-Apr. 2008.
    [5] F. S. Pai, C. L. Ou, and S. J. Huang, “Plasma-Driven System Circuit Design with Asymmetrical Pulse Width Modulation Scheme,” IEEE Trans. Ind. Electron., Vol. 58, No. 9, pp. 4167-4174, September 2011.
    [6] A. G. Lyublinsky, S. V. Korotkov, Y. V. Aristov, and D. A. Korotkov, “Pulse Power Nanosecond-Range DSRD-Based Generators for Electric Discharge Technologies,” IEEE Trans. Plasma Sci., Vol. 41, No. 10, pp. 2625-2629, Oct. 2013.
    [7] V. Kinnares and P. Hothongkham, “Circuit Analysis and Modeling of a Phase-Shifted Pulse Width Modulation Full-Bridge-Inverter-Fed Ozone Generator with Constant Applied Electrode Voltage,” IEEE Trans. Power Electron., Vol. 25, No. 7, pp.1739-1752, July 2010.
    [8] K. Takaki, I. Yagi, and T. Fujiwara, “Influence of Circuit Parameter on Ozone Synthesis Using Inductive Energy Storage System Pulsed Power Generator,” IEEE Trans. Dielectrics and Electrical Insulation, Vol. 18, No. 5, pp.1752-1758, Oct. 2011.
    [9] F. Mitsugi, T. Nagatomo, K. Takigawa, T. Sakai, T. Ikegami, K. Nagahama, K. Ebihara, T. Sung, and S. Teii, “Properties of Soil Treated With Ozone Generated by Surface Discharge,” IEEE Trans. Plasma Science, Vol. 42, No. 12, pp.3706-3711, Dec. 2014.
    [10] S. Lim, J. Ransonn, D. M. Otten, and D. J. Perreault, “Two-Stage Power Conversion Architecture Suitable for Wide Range Input Voltage,” IEEE Trans. Power Electron., Vol. 30, No. 2, pp.805-816, Feb. 2015.
    [11] Z. Wang and H. Li, “A Soft Switching Three-phase Current-fed Bidirectional DC-DC Converter With High Efficiency Over a Wide Input Voltage Range,” IEEE Trans. Power Electron., Vol. 27, No. 2, pp.669-684, Feb.2012.
    [12] A. Sarafianos and M. Steyaert, “Fully Integrated Wide Input Voltage Range Capacitive DC-DC Converters: The Folding Dickson Converter,” IEEE Journal of Solid-State Circuits, Vol. 50, No. 7, pp.1560-1570, July 2015.
    [13] P. M. Barbosa and I. Barbi, “A Single-Switch Flyback-Current-Fed DC–DC Converter,” IEEE Trans. Power Electron., Vol. 13, No. 3, pp.466-475, May 1998.
    [14] W. Li, S. Zong, F. Liu, H. Yang, X. He, and B Wu, “Secondary-Side Phase-Shift-Controlled ZVS DC/DC Converter with Wide Voltage Gain for High Input Voltage Applications,” IEEE Trans. Power Electron., Vol. 28, No. 11, pp.5128-5139, Nov. 2013.
    [15] L. Lohaus, A. Rossius, S. Dietrich, R. Wunderlich, and S. Heinen, “A Dimmable LED Driver with Resistive DAC Feedback Control for Adaptive Voltage Regulation,” IEEE Trans. Ind. Appl., Vol. 51, No. 4, pp.3254-3262, July/Aug. 2015.
    [16] H. Hu, X. Fang, F. Chen, Z. J. Shen, and I. Batarseh, “A Modified High-Efficiency LLC Converter with Two Transformers for Wide Input-Voltage Range Applications,” IEEE Trans. Power Electron., Vol. 28, No. 4, pp.1946-1960, April 2013.
    [17] J. M. Burkhart, R. Korsunsky, and D. J. Perreault, “Design Methodology for a Very High Frequency Resonant Boost Converter,” IEEE Trans. Power Electron., Vol. 28, No. 4, pp.1929-1937, April 2013.
    [18] I. O. Lee, S. Y. Cho, and G. W. Moon, “Three-Level Resonant Converter with Double LLC Resonant Tanks for High-Input-Voltage Applications,” IEEE Trans. Ind. Electron., Vol. 59, No. 9, pp.3450-3463, Sep. 2012.
    [19] Z. Jiang and R. A. Dougal, “Control Strategies for Active Power Sharing in a Fuel-Cell-Powered Battery-Charging Station,” IEEE Trans. Ind. Appl., Vol. 40, No. 3, pp. 917-924, May/June 2004.
    [20] R. J. Wai and S. J. Jhung, “Design of Energy-Saving Adaptive Fast-Charging Control Strategy for Li-FePO4 Battery Module,” IET Power Electron., Vol. 5, Iss. 9, pp. 1684–1693, June 2012.
    [21] B. Zhang, C. C. Mi, and M. Zhang, “Charge-Depleting Control Strategies and Fuel Optimization of Blended-Mode Plug-In Hybrid Electric Vehicles,” IEEE Trans. Vehicular Technology, Vol. 60, No. 4, pp. 1516–1525, May 2011.
    [22] S. Overington and S. Rajakaruna, “High-Efficiency Control of Internal Combustion Engines in Blended Charge Depletion/Charge Sustenance Strategies for Plug-In Hybrid Electric Vehicles,” IEEE Trans. Vehicular Technology, Vol. 64, No. 1, pp. 48-61, Jan. 2015.
    [23] L. R. Chen, S. L. Wu, D. T. Shieh, and T. R. Chen, “Sinusoidal-Ripple-Current Charging Strategy and Optimal Charging Frequency Study for Li-Ion Batteries,” IEEE Trans. Ind. Electron., Vol. 60, No. 1, pp. 88-97, Jan. 2013.
    [24] Y. He, B. Venkatesh, and L. Guan, “Optimal Scheduling for Charging and Discharging of Electric Vehicles,” IEEE Trans. Smart Grid, Vol. 3, No. 3, pp. 1095-1105, Sep. 2012.
    [25] F. J. Azcondo, C. Brañas, R. Casanueva, and S. Bracho, “Power-Mode-Controlled Power-Factor Corrector for Electronic Ballast,” IEEE Trans. Ind. Electron., Vol. 52, No. 1, pp. 56-65, Feb. 2005.
    [26] O. Ray, A. P. Josyula, S. Mishra, and A. Joshi, “Integrated Dual-Output Converter,” IEEE Trans. Ind. Electron., Vol. 62, No. 1, pp.371-382, Jan. 2015.
    [27] X. Liu, J. Xu, Z. Chen, and N. Wang, “Single-Inductor Dual-Output Buck–Boost Power Factor Correction Converter,” IEEE Trans. Ind. Electrons., Vol. 62, No. 2, pp.943-952, Feb. 2015.
    [28] O. Laldin, M. Moshirvaziri, and O. Trescases, “Predictive Algorithm for Optimizing Power Flow in Hybrid Ultracapacitor / Battery Storage Systems for Light Electric Vehicles,” IEEE Trans. Power Electron., Vol. 28, No. 8, pp. 3882-3895, Aug. 2013.
    [29] Y. K. Lo, C. Y. Lin, H. J. Chiu, S. J. Cheng, and J. Y. Lin, “Analysis and Design of a Push–Pull Quasi-Resonant Boost Power Factor Corrector,” IEEE Trans. Power Electron., Vol. 28, No. 1, pp. 347-356, Jan. 2013.
    [30] B. R. Lin and D. J. Chen, “Single-Phase Neutral Point Clamped AC/DC Converter with the Function of Power Factor Corrector and Active Filter,” IEE Proc. Electron. Power Appl., Vol. 149, No. 1, pp. 19-30, Jun. 2002.
    [31] A. Abramovitz and K. M. Smedley, “Analysis and Design of a Tapped-Inductor Buck-Boost PFC Rectifier with Low Bus Voltage,” IEEE Trans. Power Electron., Vol. 26, No. 9, pp. 2637-2649, Sep. 2011.
    [32] D. R. Williams, C. Bingham, D. A. Stone, and M. P. Foster, “Analysis of Dual-Output Resonant Power Converters through Use of Linear Load Approximations,” IEEE Trans. Power Electron., Vol. 27, No. 9, pp.4051-4059, Sep. 2012.
    [33] G. Vezzù, J. L. Lopez, A. Freilich, and K. H. Becker,, “Optimization of Large-Scale Ozone Generators,” IEEE Trans. Plasma Science, Vol. 37, No. 6, pp. 890-896, June 2009.
    [34] Z. Salam, M. Facta, M. Amjad, and Z. Buntat, “Design and Implementation of a Low Cost, High Yield Dielectric Barrier Discharge Ozone Generator Based on the Single Switch Resonant Converter,” IET Power Electron., Vol. 6, Iss. 8, pp. 1583–1591, April 2013.
    [35] I. O. Lee and G. W. Moon, “The k -Q Analysis for an LLC Series Resonant Converter,” IEEE Trans. Power Electron., Vol. 29, No. 1, pp. 13-16, June 2014.
    [36] X. Fang, H. B. Hu, Z. J. Shen, and I. Batarseh, “Operation Mode Analysis and Peak Gain Approximation of the LLC Resonant Converter,” IEEE Trans. Power Electron., Vol. 27, No. 4, pp. 1985-1995, Apr. 2012.
    [37] S. H. Cho, C. S. Kim, and S. K. Han, “High-Efficiency and Low-Cost Tightly Regulated Dual-Output LLC Resonant Converter,” IEEE Trans. Ind. Electron., Vol. 59, No. 7, pp. 2982-2991, Jul. 2012.
    [38] M. Amjad, Z.l Salam, M. Facta, and K. Ishaque, “A Simple and Effective Method to Estimate the Model Parameters of Dielectric Barrier Discharge Ozone Chamber,” IEEE Trans. Instrum. Meas., Vol. 61, No. 6, pp. 1676-1684, Jun. 2012.
    [39] B. Saha and R. Y. Kim, “High Power Density Series Resonant Inverter Using an Auxiliary Switched Capacitor Cell for Induction Heating Applications,” IEEE Trans. Power Electron., Vol. 29, No. 4, pp. 1909-1918, Apr. 2014.
    [40] M. Amjad and Z. Salam, “Design and Implementation of a High-Frequency Half-Bridge Resonant Converter for DBD Ozone Generator,” IET Power Electron., Vol. 7, No. 9, pp. 2403–2411, Sept. 2014.
    [41] I. O. Lee and G. W. Moon, “Analysis and Design of a Three-Level LLC Series Resonant Converter for High- and Wide-Input-Voltage Applications,” IEEE Trans. Power Electron., Vol. 27, No. 6, pp. 2966-2979 Jun. 2012.
    [42] Kinnares, V and Hothongkham, P, Nuno, “Dynamic and Steady-State Models for the PRC-LCC Resonant Topology with a Capacitor as Output Filter,” IEEE Trans. Ind. Electron., Vol. 54, No. 4, pp. 2262-2275, August 2007.
    [43] J. L. Sosa, M. Castilla, J. Miret, L. G. de Vicuna, and J. Matas, “Modeling and Performance Analysis of the DC/DC Series–Parallel Resonant Converter Operating with Discrete Self-Sustained Phase-Shift Modulation Technique,” IEEE Trans. Ind. Electron., Vol. 56, No. 3, pp. 697-705, March 2009.
    [44] C. H. Chang, E.C. Chang, and H. L. Cheng, “A High-Efficiency Solar Array Simulator Implemented by an LLC Resonant DC–DC Converter,” IEEE Trans. Power Electron., Vol. 28, No. 6, pp. 3039-3046, June 2013.
    [45] H. B. Kotte, R. Ambatipudi, and K. Bertilsson, “High-Speed Series Resonant Converter Using Multilayered Coreless Printed Circuit Board Step-Down Power Transformer,” IEEE Trans. Power Electron., Vol. 28, No. 3, pp. 1253-1264, March 2013.
    [46] R. Beiranvand, B. Rashidian, M. R. Zolghadri, and S. M. H. Alavi, “A Design Procedure for Optimizing the LLC Resonant Converter as a Wide Output Range Voltage Source,” IEEE Trans. Power Electron., Vol. 27, No. 8, pp. 3749-3763, August. 2012.
    [47] B. Hredzak, V. G. Agelidis, and G. D. Demetriades, “A Low Complexity Control System for a Hybrid DC Power Source Based on Ultracapacitor–Lead–Acid Battery Configuration,” IEEE Trans. Power Electron., Vol. 29, No. 6, pp. 2882-2891, Jun. 2014.
    [48] B. R. Lin and S. F. Wu, “ZVS Resonant Converter with Series-Connected Transformers,” IEEE Trans. Ind. Electron., Vol. 58, No. 8, pp. 3547-3554, Aug. 2011.
    [49] Y. K. Lo, C. Y. Lin, M. T. Hsieh, and C. Y. Lin, “Phase-Shifted Full-Bridge Series-Resonant DC-DC Converters for Wide Load Variations,” IEEE Trans. Ind. Electron., Vol. 58, No. 6, pp. 2572-2575, Jun. 2011.
    [50] S. H. Ryu, D. H. Kim, M. J. Kim, J. S. Kim, and B. K. Lee, “Adjustable Frequency-Duty-Cycle Hybrid Control Strategy for Full-Bridge Series Resonant Converters in Electric Vehicle Chargers,” IEEE Trans. Ind. Electron., Vol. 61, No. 10, pp. 5354-5362, Oct. 2014.
    [51] J. Diaz, P. J. V. Saiz, and J. A. Martin-Ramos, A. Martin-Pernia, and J. A. Martinez, “A High-Voltage AC/DC Resonant Converter Based on PRC With Single Capacitor as an Output Filter,” IEEE Trans. Ind. Appl., Vol. 46, No. 6, pp. 2134-2142, Nov.-Dec. 2010.
    [52] J. A. Martin-Ramos, P. J. V. Saiz, A. M. Pernia, J. Diaz, and J. A. Martinez, ”Optimal Control of a High-Voltage Power Supply Based on the PRC-LCC Topology with a Capacitor as Output Filter,” IEEE Trans. Ind. Appl., Vol. 49, No. 5, pp. 2323-2329, Sept.-Oct. 2013.
    [53] R. Beiranvand, M. R. Zolghadri, B. Rashidian, and S. M. H. Alavi, “Optimizing the LLC–LC Resonant Converter Topology for Wide-Output-Voltage and Wide-Output-Load Applications,” IEEE Trans. Power Electron., Vol. 26, No. 11, pp. 3192-3204, Nov. 2011.
    [54] Y. C. Chuang, Y. L. Ke, H. S. Chuang, and Y. M. Chen, “Analysis and Implementation of Half-Bridge Series-Parallel Resonant Converter for Battery Chargers,” IEEE Trans. Ind. Appl., Vol. 47, No. 1, pp. 258-270, Jan.- Feb. 2011.
    [55] A. A. Aboushady, K. H. Ahmed, S. J. Finney, and B. W. Williams, “Linearized Large Signal Modeling, Analysis, and Control Design of Phase-Controlled Series-Parallel Resonant Converters Using State Feedback,” IEEE Trans. Power Electron., Vol. 28, No. 8, pp. 3896-3911, Aug. 2013.
    [56] A. Kuperman, I. Aharon, S. Malki, and A. Kara, “Design of a Semiactive Battery-Ultracapacitor Hybrid Energy Source,” IEEE Trans. Power Electron., Vol. 28, No. 2, pp. 806-815, Feb. 2013.
    [57] H. Qian, J. Zhang, J. S. Lai, and W. Yu, “A High-Efficiency Grid-Tie Battery Energy Storage System,” IEEE Trans. Power Electron., Vol. 26, No. 3, pp. 886-896, Mar. 2011.
    [58] J. C. Schroeder and F. W. Fuchs, “General Analysis and Design Guideline for a Battery Buffer System With DC/DC Converter and EDLC for Electric Vehicles and its Influence on Efficiency,” IEEE Trans. Power Electron., Vol. 30, No. 2, pp. 922-932, Feb. 2015.
    [59] T. Labella, W. Yu, J. S. Lai, M. Senesky, and D. Anderson, “A Bidirectional-Switch-Based Wide-Input Range High-Efficiency Isolated Resonant Converter for Photovoltaic Applications,” IEEE Trans. Power Electron., Vol. 29, No. 7, pp. 3473-3484 Jul. 2014.
    [60] L. R. Chen, C. S. Liu, and J. J. Chen, “Improving Phase-Locked Battery Charger Speed by Using Resistance-Compensated Technique,” IEEE Trans. Ind. Electron., Vol. 56, No. 4, pp. 1205-1211, Apr. 2009.
    [61] M. Chen and G. A. Rincón-Mora, “Accurate, Compact, and Power-Efficient Li-Ion Battery Charger Circuit,” IEEE Trans. Circuit and System-II, Vol. 53, No.11, pp.1180-1184, Nov. 2006.
    [62] J. J. Chen, F. C. Yang, C. C. Lai, Y. S. Hwang, and R. G. Lee, “A High-Efficiency Multimode Li-Ion Battery Charger with Variable Current Source and Controlling Previous-Stage Supply Voltage,” IEEE Trans. Ind. Electron., Vol. 56, No. 7, pp. 2469-2478, Jul. 2009.
    [63] E. O. Torres and G. A. Rincon-Mora, ”Electrostatic Energy Harvesting and Battery Charging CMOS System Prototype,” IEEE Trans. Circuit and System-I, Vol. 56, No. 9, pp. 1938-1948, Sep. 2009.
    [64] M. A. S. Masoum, S. M. M. Badejani, and E. F. Fuchs, “Microprocessor-Controlled New Class of Optimal Battery Chargers for Photovoltaic Applications,” IEEE Trans. Energy Conversion, Vol. 19, No. 3, pp. 599-606, Sep. 2004.
    [65] D. V. Do, C. Forgez, K. E. K. Benkara, and G. Friedrich, “Impedance Observer for a Li-Ion Battery Using Kalman Filter,” IEEE Trans. Vehicular Technology, Vol. 58, No. 8, pp. 3930-3937, Oct. 2009.
    [66] B. Schweighofer, K. M. Raab, and G. Brasseur, “Modeling of High Power Automotive Batteries by the Use of An Automated Test System,” IEEE Trans. Instrum. Meas., Vol. 55, No. 4, pp. 1087-1091, Aug. 2003.
    [67] H. Chen, Y. Zhang, and D. Ma, “A SIMO Parallel-Sting Driver IC for Dimmable LED Blacklighting with Local Bus Voltage Optimization and Single Time-Shared Regulation Loop,” IEEE Trans. Power Electron., Vol. 27, No. 1, pp. 452-462, January 2012.
    [68] A. T. L. Lee, J. K. O. Sin, and P. C. H. Chan, “ Scalability of Quasi-Hysteretic FSM-Based Digitally Controlled Single-Inductor Dual-String Buck LED Driver to Multiple Strings,” IEEE Trans. Power Electron., Vol. 29, No. 1, pp. 501-513, January 2014.
    [69] A. Emadi, Y. J. Lee, and K. Rajashekara, “Power Electronics and Motor Drivers in Electric, Hybrid Electric, and Plug-In Hybrid Electric Vehicles,” IEEE Trans. Ind. Electron., Vol. 55, No. 6, pp. 2237-2245, June 2008.
    [70] J. Karedal, F. Tufvesson, N. Czink, A. Paier, C. Dumard, T. Zemen, C. F. Mecklenbrauker, and A. F. Molisch, “A Geometry-Based Stochastic MIMO Model for Vehicle-to-Vehicle Communications,” IEEE Trans. Wireless Communications, Vol. 8, No. 7, pp. 3646-3657, July 2009.
    [71] F. Yijia and J. Thompson, “MIMO Configurations for Relay Channels: Theory and Practice,” IEEE Trans. Wireless Communications, Vol. 6, No. 5, pp. 1774-1786, May 2007.
    [72] H. S. Chung, S. Y. Hui, and W. H. Wang, “A Zero Current Switching PWM Flyback Converter with A Simple Auxiliary Switch,” IEEE Trans. Power Electron., Vol. 14, No. 2, pp. 329-342, March 1999.
    [73] T. Bhattacharya, V. S. Giri, K. Mathew, and L. Umanand, “Multiphase Bidirectional Flyback Converter Topology for Hybrid Electric Vehicles,” IEEE Trans. Ind. Electron., Vol. 56, No. 1, pp. 78-84, December 2008.
    [74] E. Adib and H. Farzanehfard, “Analysis and Design of A Zero Current Switching Forward Converter with Simple Auxiliary Circuit,” IEEE Trans. Power Electron., Vol. 27, No. 1, pp. 144-150, January 2012.
    [75] B. S. Lim, H. J. Kim, and W. S. Chung, “A Self Driven Active Clamp Forward Converter Using The Auxiliary Winding of The Power Transformer,” IEEE Trans. Circuits and Systems, Vol. 50, No. 10, pp. 549-551, October 2004.
    [76] U. R. Prasanna, A. K. Rathore, and S. K. Mazumder, “Novel Zero Current Switching Current Fed Half-Bridge Isolated DC-DC Converter for Fuel-Cell-Based Applications,” IEEE Trans. Ind. Appl., Vol. 49, No. 4, pp. 1658-1668, August 2013.
    [77] D. Gautam, F. Musavi, M. Edington, W. Eberle, and W. G. Dunford, “A Zero Voltage Switching Full Bridge DC-DC Converter with Capacitive Output Filter for Plug In Hybrid Electric Vehicle Battery Charging,” IEEE Trans. Power Electron., Vol. 28, No. 12, pp. 5728-5735, December 2013.
    [78] J. G. Cho, J. W. Baek, C. Y. Jeong, D. W, Yoo, and K. Y. Joe, “Novel Zero Voltage and Zero Current Switching Full Bridge PWM Converter Using Transformer Auxiliary Winding,” IEEE Trans. Power Electron., Vol. 15, No. 2, pp. 250-257, March 2000
    [79] M. Amjad and Z. Salam, “Analysis, Design, and Implementation of Multiple Parallel Ozone Chambers for High Flow Rate,” IEEE Trans. Ind. Electron., Vol. 61, No. 2, pp. 753-765, Feb. 2014.
    [80] J. M. Alonso, J. García, A. J. Calleja, J. Ribas, and J. Cardesín, “Analysis, Design, and Experimentation of a High-Voltage Power Supply for Ozone Generation Based on Current-Fed Parallel-Resonant Push-Pull Inverter,” IEEE Trans. Ind. Appl., Vol. 41, No. 5, pp. 1364-1372, Sept.-Oct. 2005.
    [81] J. M. Alonso, J. Cardesín, E.L Corominas, M. Rico-Secades, and J. Garcia, “Low-Power High-Voltage High-Frequency Power Supply for Ozone Generation,” IEEE Trans. Ind. Appl., Vol. 40, No. 2, pp. 414-421, Mar.-Apr. 2004.
    [82] C. H. Lin, C. Y. Hsieh, and K. H. Chen, “A Li-Ion Battery Charger with Smooth Control Circuit and Built-In Resistance Compensator for Achieving Stable and Fast Charging,” IEEE Trans. Circuit and System-I, Vol. 57, No. 2, pp. 506-517, Feb. 2010.
    [83] R. Oftadeh and M. J. Mahjoob, “A New Meta-Heuristic Optimization Algorithm: Hunting Search,” International Conference on Soft Computing, in System Analysis, Decision and Control, Iran, pp.1-5, Sep. 2009.
    [84] A. Margaris, N. Kofidis and M. Roumeliotis, “A Detailed Study of the Wolf’s Algorithm,” International Journal on Computer Mathematics, Vol. 86, No. 7, pp. 1135-1148, Jul. 2009
    [85] B. W. K. Ling, C. Bingham, H. H. C. Lu, and K. L. Teo, “Combined Optimal Pulse Width Modulation and Pulse Frequency Modulation Strategy for Controlling Switched Mode DC–DC Converters Over a Wide Range of Loads,” IET Control Theory and Applications, Vol. 6, No. 13, pp. 1973-1983, September 2012.
    [86] H. Ma, Q Liu, and Y. Wang, “Discrete Pulse Frequency Modulation Control with Sliding-Mode Implementation on LLC Resonant DC/DC Converter via Input-Output Linearization,” IET Power Electronics, Vol. 7, No. 5, pp. 1033-1043, May 2014.

    無法下載圖示 校內:2026-12-31公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE