| 研究生: |
林宥彤 Lin, Yu-Tung |
|---|---|
| 論文名稱: |
利用三維都市模型系統化生成情境架構於都市微氣候模擬應用-以中壢運動公園園區整體開發地區為例 Systematic Generation of Contextual Frameworks for Urban Microclimate Simulations Using Three-Dimensional Urban Models: A Case Study of the Zhongli Sports Park Development Project in Taoyuan City |
| 指導教授: |
顧嘉安
Ku, Chia-An |
| 學位類別: |
碩士 Master |
| 系所名稱: |
規劃與設計學院 - 都市計劃學系 Department of Urban Planning |
| 論文出版年: | 2025 |
| 畢業學年度: | 113 |
| 語文別: | 中文 |
| 論文頁數: | 133 |
| 中文關鍵詞: | 都市微氣候 、程序建模 、系統化情境架構 、CityEngine 、ENVI-met |
| 外文關鍵詞: | Urban Microclimate, Procedural Modeling, Contextual Frameworks, CityEngine, ENVI-met |
| 相關次數: | 點閱:25 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
隨著都市擴張、高密度開發等快速發展,臺灣所面臨之都市熱島效應問題日益嚴峻,都市內氣溫逐漸上升。因此,如何藉由事前模擬更精確地分析都市環境與微氣候之間的關聯,進而提出具操作性的都市規劃改善策略,已成為提升都市永續性的課題之一。然而,傳統二維規劃模式難以全面掌握都市型態與微氣候互動關係,而既有三維都市微氣候模擬研究亦多倚賴研究者主觀設定,缺乏系統化與可重複驗證之流程,使得模擬結果在客觀性與實務應用性方面存有侷限。
因此,本研究旨在探討都市微氣候模擬在都市規劃領域中的創新應用,以程序化三維都市模型結合統計抽樣技術,將生成之情境以都市相關法規限制作為篩選模擬情境指標,建構出一套「系統化情境生成機制」,從而提高模擬情境的客觀性、可行性與合理性,並能評估對都市微氣候之影響。本研究選定桃園市中壢運動公園園區整體開發地區作為研究範圍,利用CityEngine的電腦生成建築語法(CGA),結合拉丁超立方體抽樣(LHS)方法系統化地生成多樣化情境,並透過都市計畫法規篩選式機制,篩選出具合理、操作性的未來發展情境。隨後使用ENVI-met都市微氣候模型進行模擬,以探討不同都市型態情境在氣溫、相對濕度與風速等參數呈現上的差異,並藉此探討都市型態與都市微氣候之關聯性。
研究結果顯示,相較於以往研究仰賴單一參數調整或主觀經驗設定,透過程序建模與LHS抽樣方式所生成之三維都市模型,能夠有效降低情境設定的主觀性,提高都市規劃在模擬的客觀性與合理性。研究發現,都市參數在形塑都市空間型態過程中亦扮演重要角色,進而間接影響了都市微氣候與都市型態。而模擬與量化分析顯示雖然都市型態與都市微氣候間具關聯性,然兩者之間存有非線性與動態交互作用,統計模型與單一指標難以全面解釋,仍須回歸模擬以詮釋局部空間內之都市微氣候差異。
本研究透過提出「系統化情境架構–法規篩選–都市微氣候模擬評估」的整合性流程,不僅為情境模擬建構了一個整合性的都市規劃與微氣候評估架構,亦提供了一套客觀且具操作性的模型生成方式。而CGA語法亦可套用於不同地區進行視覺化模擬,有效協助都市規劃者在實務操作中提前預測、評估各項都市規劃方案之微氣候效應,為未來都市微氣候研究與實務應用奠定基礎。
The urban heat island (UHI) phenomenon has intensified in Taiwan, especially in densely urbanized areas, posing significant sustainability and resilience challenges. This study introduces a systematic approach using three-dimensional procedural modeling and statistical sampling techniques (Latin Hypercube Sampling, LHS) to objectively generate and assess diverse urban development scenarios. By utilizing CityEngine and ENVI-met simulations, the study evaluates the impact of various urban forms on microclimate conditions such as temperature, humidity, and wind speed. Results indicate the proposed methodology reduces subjective biases and enhances the objectivity and practical applicability of urban microclimate simulations, providing an integrated evaluative framework for future urban planning.
中文文獻
石婉瑜 & Leslie Mabon. (2018). 臺北盆地的熱環境特徵與都市綠色基盤的影響. 都市與計劃, 45(4).
吉野正敏. (1975). 小氣候. 東京:大明堂株式會社。
林君娟, 謝俊民, & 程琬鈺. (2010). 建立都市住宅風環境舒適度指標與改善策略評估-以台南市大林住宅都市更新地區為例. 建築與規劃學報, 11(3), 221–241.
林炯明. (2010). 都市熱島效應之影響及其環境意涵. 生態與環境學報, 第3卷第1期. 1-15.
林憲德, 陳冠廷, & 郭曉青. (2001). 台灣中型都市熱島現象與土地利用之觀測解析. 規劃學報, 8, 47–64.
孫振義, 林憲德, 呂罡銘, 劉正千, & 陳瑞鈴. (2010). 台南市地表溫度與地表覆蓋關係之研究. 都市與計劃, 37(3), 369–391.
黃柔嫚, & 洪崧連. (2019). 為改善都市熱島效應之台灣都市公園空間型態研究-以嘉義市公園為例. 造園景觀學報, 23(3), 19–50.
黃崑山. (2006). 由開發管制理念探討台灣都市設計之定位與功能. 都市與計劃, 33(1).
氣候變遷災害風險調適平台.(2019). 平均氣候觀測. 行政法人國家災害防救科技中心.
氣候變遷災害風險調適平台.(2024). 臺灣氣候變遷分析系列報告:暖化趨勢下的臺灣極端高溫與衝擊. 國家科學及技術發展委員會.
高文婷 & 張效通. (2019). 我國都市設計審議效能性與課責性之分析與改進. 都市與計劃, 46(3).
高文婷, & 張效通. (2018). 從都市建築管理制度探討因應社會發展變更使用准駁之關鍵因素. 建築學報, 05, 15–31.
張芳瑜. (2016).建築容積集中化對都市微氣候的影響. 碩士論文. 中華科技大學建築研究所.
鍾馨葆, & 蘇瑛敏. (2022). 高層建築配置與量體退縮對天空可視率與都市微氣候之影響. 建築學報, 121_S, 23–52.
英文文獻
Aboulnaga, M., Trombadore, A., Mostafa, M., & Abouaiana, A. (2024). Urban Green Coverage as a Strategy for Mitigating High Temperatures in Cities. Livable Cities: Urban Heat Islands Mitigation for Climate Change Adaptation Through Urban Greening. 367–408.
Acero, J. A., & Herranz-Pascual, K. (2015). A comparison of thermal comfort conditions in four urban spaces by means of measurements and modelling techniques. Building and Environment, 93, 245–257.
Adelia, A. S., Nevat, I., Acero, J. A., Li, S., & Ruefenacht, L. (2020). Tool comparison for urban microclimate modelling. ETH Zurich.
Afzal, A., Kim, K.-Y., & Seo, J.-W. (2017). Effects of Latin hypercube sampling on surrogate modeling and optimization. International Journal of Fluid Machinery and Systems, 10(3), 240–253.
Alchapar, N. L., Pezzuto, C. C., Correa, E. N., & Chebel Labaki, L. (2017). The impact of different cooling strategies on urban air temperatures: The cases of Campinas, Brazil and Mendoza, Argentina. Theoretical and Applied Climatology, 130(1), 35–50.
Ali-Toudert, F., & Mayer, H. (2007). Effects of asymmetry, galleries, overhanging façades and vegetation on thermal comfort in urban street canyons. Solar Energy, 81(6), 742–754.
Ambrosini, D., Galli, G., Mancini, B., Nardi, I., & Sfarra, S. (2014). Evaluating Mitigation Effects of Urban Heat Islands in a Historical Small Center with the ENVI-Met Climate Model. Sustainability, 6(10), 7013–7029.
Amer, M., Daim, T. U., & Jetter, A. (2013). A review of scenario planning. Futures, 46, 23–40.
Apreda, C., Reder, A., & Mercogliano, P. (2020). Urban morphology parameterization for assessing the effects of housing blocks layouts on air temperature in the Euro-Mediterranean context. Energy and Buildings, 223, 110171.
Badwi, I. M., Ellaithy, H. M., & Youssef, H. E. (2022). 3D-GIS Parametric Modelling for Virtual Urban Simulation Using CityEngine. Annals of GIS, 28(3), 325–341.
Berardi, U., & Wang, Y. (2016). The Effect of a Denser City over the Urban Microclimate: The Case of Toronto. Sustainability, 8(8), 1–11.
Bezold, C. (2010). Lessons from using scenarios for strategic foresight. Technological Forecasting and Social Change, 77(9), 1513–1518.
Bowler, D. E., Buyung-Ali, L., Knight, T. M., & Pullin, A. S. (2010). Urban greening to cool towns and cities: A systematic review of the empirical evidence. Landscape and Urban Planning, 97(3), 147–155.
Chai, T., & Draxler, R. R. (2014). Root mean square error (RMSE) or mean absolute error (MAE)? – Arguments against avoiding RMSE in the literature. Geoscientific Model Development, 7(3), 1247–1250.
Chang, C.-R., Li, M.-H., & Chang, S.-D. (2007). A preliminary study on the local cool-island intensity of Taipei city parks. Landscape and Urban Planning, 80(4), 386–395.
Chun, B., & Guldmann, J. (2014). Spatial statistical analysis and simulation of the urban heat island in high-density central cities. Landscape and Urban Planning, 125, 76–88.
CityEngine. (2025). Introduction to CityEngine. Retrieved from https://doc.arcgis.com/en/cityengine/latest/get-started/get-started-about-cityengine.htm.
CityEngine. (2025). CGA reference. Retrieved from https://doc.arcgis.com/en/cityengine/latest/cga/cityengine-cga-introduction.htm.
Cortes, A., Rejuso, A. J., Santos, J. A., & Blanco, A. (2022). Evaluating mitigation strategies for urban heat island in Mandaue City using ENVI-met. Journal of Urban Management, 11(1), 97–106.
Detommaso, M., Costanzo, V., & Nocera, F. (2021). Application of weather data morphing for calibration of urban ENVI-met microclimate models. Results and critical issues. Urban Climate, 38, 100895.
Dimoudi, A., & Nikolopoulou, M. (2003). Vegetation in the urban environment: Microclimatic analysis and benefits. Energy and Buildings, 35(1), 69–76.
Dimoudi, A., Kantzioura, A., Zoras, S., Pallas, C., & Kosmopoulos, P. (2013). Investigation of urban microclimate parameters in an urban center. Energy and Buildings, 64, 1–9.
Dutta, S., & Gandomi, A. H. (2020). Chapter 15—Design of experiments for uncertainty quantification based on polynomial chaos expansion metamodels. Handbook of Probabilistic Models. 369–381.
ENVI-met. (2025). Vertical Grid. Retrieved from https://envi-met.info/doku.php?id=kb:verticalgrid.
EPA. (2019). What Are Heat Island? Retrieved from United States Enviornmental Protection Agency: https://www.epa.gov/heatislands/what-are-heat-islands.
Faragallah, R. N., & Ragheb, R. A. (2022). Evaluation of thermal comfort and urban heat island through cool paving materials using ENVI-Met. Ain Shams Engineering Journal, 13(3), 101609.
Gröger, G., & Plümer, L. (2012). CityGML – Interoperable semantic 3D city models. ISPRS Journal of Photogrammetry and Remote Sensing, 71, 12–33.
Gusson, C. S., & Duarte, D. H. S. (2016). Effects of Built Density and Urban Morphology on Urban Microclimate—Calibration of the Model ENVI-met V4 for the Subtropical Sao Paulo, Brazil. Procedia Engineering, 169, 2–10.
Hajrasouliha, A., & Amos, D. (2024). Procedural Modeling in Urban Digital Twins as a Tool for Visualization, Analysis, and Public Engagement: Examining a Housing Policy in California. Journal of Planning Education and Research.
Harlan, S. L., & Ruddell, D. M. (2011). Climate change and health in cities: Impacts of heat and air pollution and potential co-benefits from mitigation and adaptation. Current Opinion in Environmental Sustainability, 3(3), 126–134.
Hofstra, N., Haylock, M., New, M., Jones, P., & Frei, C. (2008). Comparison of six methods for the interpolation of daily, European climate data. Journal of Geophysical Research: Atmospheres, 113(D21).
Intergovernmental Panel on Climate Change. (2002). Climate Change 2001: The Scientific Basis. Foreign Affairs, 81(1), 208.
Jakeman, A. J., Letcher, R. A., & Norton, J. P. (2006). Ten iterative steps in development and evaluation of environmental models. Environmental Modelling & Software, 21(5), 602–614.
Jebeile, J., Lam, V., Majszak, M., & Räz, T. (2023). Machine learning and the quest for objectivity in climate model parameterization. Climatic Change, 176(8), 101.
Jin, H., Cui, P., Wong, N. H., & Ignatius, M. (2018). Assessing the Effects of Urban Morphology Parameters on Microclimate in Singapore to Control the Urban Heat Island Effect. Sustainability, 10(1), 206.
Jin, H., Liu, Z., Jin, Y., Kang, J., & Liu, J. (2017). The Effects of Residential Area Building Layout on Outdoor Wind Environment at the Pedestrian Level in Severe Cold Regions of China. Sustainability, 9(12), 2310.
Lan, H., Gou, Z., & Hou, C. (2022). Understanding the relationship between urban morphology and solar potential in mixed-use neighborhoods using machine learning algorithms. Sustainable Cities and Society, 87, 104225.
Lipson, M. J., Nazarian, N., Hart, M. A., Nice, K. A., & Conroy, B. (2022). A Transformation in City-Descriptive Input Data for Urban Climate Models. Frontiers in Environmental Science, 10, 866398.
McKay, M. D., Beckman, R. J., & Conover, W. J. (1979). A Comparison of Three Methods for Selecting Values of Input Variables in the Analysis of Output from a Computer Code. Technometrics, 21(2), 239–245.
Means, E., Patrick, R., Ospina, L., & West, N. (2005). Scenario Planning: A Tool to Manage Future Water Utility Uncertainty. Journal AWWA, 97(10), 68–75.
Oke, T. (1982). The energetic basis of urban heat island. Quarterly Journal of the Royal Meteorological Society, 108, 1–24.
Orlanski, I. (1975). A Rational Subdivision of Scales for Atmospheric Processes. Bulletin of the American Meteorological Society, 56(5), 527–530.
Ouyang, Z., Sciusco, P., Jiao, T., Feron, S., Lei, C., Li, F., John, R., Fan, P., Li, X., Williams, C. A., Chen, G., Wang, C., & Chen, J. (2022). Albedo changes caused by future urbanization contribute to global warming. Nature Communications, 13(1), 3800.
Paul Schoemaker. 1995. Scenario Planning: A Tool for Strategic Thinking. MIT Sloan Management Review. 36 (2): 25–40.
Razzaghmanesh, M., Beecham, S., & Salemi, T. (2016). The role of green roofs in mitigating Urban Heat Island effects in the metropolitan area of Adelaide, South Australia. Urban Forestry & Urban Greening, 15, 89–102.
Santamouris, M. (2013). Using cool pavements as a mitigation strategy to fight urban heat island-A review of the actual developments. Renewable and Sustainable Energy Reviews, 26, 224–240.
Santamouris, M., Ding, L., Fiorito, F., Oldfield, P., Osmond, P., Paolini, R., Prasad, D., & Synnefa, A. (2017). Passive and active cooling for the outdoor built environment – Analysis and assessment of the cooling potential of mitigation technologies using performance data from 220 large scale projects. Solar Energy, 154, 14–33.
Schoemaker, P. (1995). Scenario Planning: A Tool for Strategic Thinking. Sloan Management Review, 36, 25–40.
Sezer, N., Yoonus, H., Zhan, D., Wang, L. (Leon), Hassan, I. G., & Rahman, M. A. (2023). Urban microclimate and building energy models: A review of the latest progress in coupling strategies. Renewable and Sustainable Energy Reviews, 184, 113577.
Shen, Y., Kong, W., Fei, F., Chen, X., Xu, Y., Huang, C., & Yao, J. (2024). Stereoscopic urban morphology metrics enhance the nonlinear scale heterogeneity modeling of UHI with explainable AI. Urban Climate, 56, 102006.
Shields, M. D., & Zhang, J. (2016). The generalization of Latin hypercube sampling. Reliability Engineering & System Safety, 148, 96–108.
Steinø, N., & Obeling, E. (2014). Developing a Parametric Urban Design Tool: Hybrid Environment for Architecture. Architecturae et Artibus, 6(1), 51–57.
Taha, H. (1997). Urban climates and heat islands: Albedo, evapotranspiration, and anthropogenic heat. Energy and Buildings, 25(2), 99–103.
Toparlar, Y., Blocken, B., Maiheu, B., & van Heijst, G. J. F. (2017). A review on the CFD analysis of urban microclimate. Renewable and Sustainable Energy Reviews, 80, 1613–1640.
Tsoka, S., Tsikaloudaki, A., & Theodosiou, T. (2018). Analyzing the ENVI-met microclimate model’s performance and assessing cool materials and urban vegetation applications–A review. Sustainable Cities and Society, 43, 55–76.
Uddin, M. N., Wang, Q., Wei, H. H., Chi, H. L., & Ni, M. (2021). Building information modeling (BIM), System dynamics (SD), and Agent-based modeling (ABM): Towards an integrated approach. Ain Shams Engineering Journal, 12(4), 4261–4274.
Wang, B., Cot, L. D., Adolphe, L., Geoffroy, S., & Sun, S. (2017). Cross indicator analysis between wind energy potential and urban morphology. Renewable Energy, 113, 989–1006.
Wang, H., Cai, Y., Deng, W., Li, C., Dong, Y., Zhou, L., Sun, J., Li, C., Song, B., Zhang, F., & Zhou, G. (2023). The Effects of Tree Canopy Structure and Tree Coverage Ratios on Urban Air Temperature Based on ENVI-Met. Forests, 14(1), 80.
Xu, Y., Yang, J., Zheng, Y., & Li, W. (2024). Impacts of two-dimensional and three-dimensional urban morphology on urban thermal environments in high-density cities: A case study of Hong Kong. Building and Environment, 252, 111249.
Xue, F., Wu, L., & Lu, W. (2021). Semantic enrichment of building and city information models: A ten-year review. Advanced Engineering Informatics, 47, 101245.
Yan, J., Yin, C., An, Z., Mu, B., Wen, Q., Li, Y., Zhang, Y., Chen, W., Wang, L., & Song, Y. (2023). The Influence of Urban Form on Land Surface Temperature: A Comprehensive Investigation from 2D Urban Land Use and 3D Buildings. Land, 12(9), 1802.
Yang, J., Wang, Y., Xiu, C., Xiao, X., Xia, J., & Jin, C. (2020). Optimizing local climate zones to mitigate urban heat island effect in human settlements. Journal of Cleaner Production, 275, 123767.
Yang, J., Wang, Z.-H., & Kaloush, K. E. (2015). Environmental impacts of reflective materials: Is high albedo a ‘silver bullet’ for mitigating urban heat island? Renewable and Sustainable Energy Reviews, 47, 830–843.
Yang, S., Wang, L. (Leon), Stathopoulos, T., & Marey, A. M. (2023a). Urban microclimate and its impact on built environment – A review. Building and Environment, 238, 110334.
Zaki, S., Othman, N., Syahidah, S., Yakub, F., Muhammad-Sukki, F., Ardila-Rey, J., Shahidan, M., & Mohd Saudi, A. (2020). Effects of Urban Morphology on Microclimate Parameters in an Urban University Campus. Sustainability, 12(7), 7.
Zhang, M., Wu, J., Liu, Y., Zhang, J., & Li, G. (2022). GIS Based Procedural Modeling in 3D Urban Design. ISPRS International Journal of Geo-Information, 11(10), 10.
Zhang, X., Jiao, Z., Zhao, C., Qu, Y., Liu, Q., Zhang, H., Tong, Y., Wang, C., Li, S., Guo, J., Zhu, Z., Yin, S., & Cui, L. (2022). Review of Land Surface Albedo: Variance Characteristics, Climate Effect and Management Strategy. Remote Sensing, 14(6), 1382.
Zhang, Z., Luan, W., Yang, J., Guo, A., Su, M., & Tian, C. (2023). The influences of 2D/3D urban morphology on land surface temperature at the block scale in Chinese megacities. Urban Climate, 49, 101553.
Zhao, Z., Li, H., & Wang, S. (2024). Machine learning-based surrogate models for fast impact assessment of a new building on urban local microclimate at design stage. Building and Environment, 266, 112142.
Zhu, Z., Shen, Y., Fu, W., Zheng, D., Huang, P., Li, J., Lan, Y., Chen, Z., Liu, Q., Xu, X., & Yao, X. (2023). How does 2D and 3D of urban morphology affect the seasonal land surface temperature in Island City? A block-scale perspective. Ecological Indicators, 150, 110221.
校內:2028-08-31公開