簡易檢索 / 詳目顯示

研究生: 沈煜棠
Shen, Yu-Tang
論文名稱: 表面聲波感測器元件與系統之研究、製作及開發
Investigation, Fabrication and Development of Surface Acoustic Wave Sensor Chip and System
指導教授: 黃正亮
Huang, Cheng-Liang
吳朗
Wu, Long
沈季燕
Shen, Chi-Yen
學位類別: 博士
Doctor
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2005
畢業學年度: 93
語文別: 英文
論文頁數: 185
中文關鍵詞: 鈮酸鋰石英表面聲波黏彈性剪力表面聲波感測器鉭酸鋰
外文關鍵詞: LiNbO3, Quartz, LiTa03, SH-SAW Sensor, Surface Acoustic Wave, Viscoelastic
相關次數: 點閱:105下載:11
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   表面聲波元件因為其具有體積小、價格便宜、高靈敏度及高再現性,所以經常會被使用於化學感測的應用。在文獻資料中,表面聲波感測器無論在氣態環境下及液態環境下的分子檢測都有相當良好的表現。而表面聲波感測器感測的主要機置來自於質量加載效應、黏彈性效應及聲電效應。這些效應都會引起表面聲波感測器的波傳速度變化及聲波能量的變化。這些效應的產生主要來自於表面聲波元件中的化學塗層。而這些塗層是一些具有選擇性和再現性的生物或化學塗層。本研究主要探討這些塗層的效應,並建立一套完整的表面聲波感測系統。這些研究主要區分為下列項目:
    1.當聚合物(polymer)被當成生物塗層,彈性效應的擾動就會變的明顯,所以一般的質量加載分析就沒辦法進行較完整的分析。因此Martin and Frye的彈性效應分析加上Auld的擾動定理就被拿來做表面聲波元件的黏彈效應分析。這個研究將會推導這個分析的理論。
    2.聚合物切變模數(shear moduli)和塊體模數(bulk moduli)的在感測的影響也會在這個研究中進行討論。從計算的結果看出,塊體模數對感測的影響是可以被呼略的,所以可以自行設定成常數。而如果只研究聲波元件的波數變化,切變模數的虛部是可以被忽略兒設成常數的。而將Y-Z的鋰酸鈮(LiNbO3)塗上三種不同化學塗層(glassy、glassy-rubbery及rubbery)製成有機磷酸分子感測器的研究中發現glassy-rubbery型態的塗層有比較好的特性。
    3.另外我們對ST-cut石英的黏彈特性進行討論及研究。在研究結果得到了部份結論,基於靈敏度、聲波消散及溫度穩定性的考量,在氣態環境下,ST-X石英塗上glassy-rubbery型態的化學塗層的感測器會有最佳的特性。
    4.另外,環境因素(如濕度和乙醇等)的影響也會被研究。研究發現,如果使用ST-X石英做為表面聲波感測器,當FPOL膜厚為0.02、0.017及0.015m時,如各別選用105-130MHz、125-155MHz和140-175MHz等操作頻率會有最小的濕度效應。而高頻的表面聲波感測器,最好還是使用在乾燥的環境。
    5.雷利波(Rayleigh-wave)在液態操作下,會產生大量的能量損耗而無法使用。但是水平剪力波(SH-SAW)在液態環境中確不會有大量能量損耗。基於這項原因,水平剪力波的表面聲波元件被選為要開發的表面聲波感測器基板。而我們選用的是Y36o-X 的鉭酸鈮(LiTaO3)為基版。
    6.表面聲波感測器的指叉電極和反射電極的保護,我選用了具光靈敏度的聚蔥亞胺(polyimide)來保護。為了降低表面聲波感測器的雜訊干擾,我在元件上使用了電性隔離通道並將兩通道接地分開。在系統設計上,溫度不穩定的問題,我使用了一個高精度的溫度控制器和一個溫度補償的數學方法來解決。我們在這個研究中開發了一套全新而穩定的表面聲波感測系統。
    7.這個新系統,我們設計了兩套實驗來驗證,一個為酒精濃度檢測,另一個為液體分類。實驗結果,濃度百分之8.75的酒精會有103.5ppm的反應,且可重覆使用,而其雜訊(noise level)約為0.7ppm。因此,其訊雜比(signal-to-noise ratio)約為148。另一項實驗結果,這機台成功的分辨水、生理食鹽水、運動飲料及柳橙汁。
    8.最後我們用將表面聲波元件塗上導電性的薄膜作為氨氣的感測器,這導電性的薄膜為聚苯胺(polyaniline)。實驗結果發現,這個氨氣感測元件於攝氏25度下的靈敏度約為0.23 deg/ppm且其最小可量測程度為0.07ppm。所以塗上導電性的薄膜的表面聲波氨氣感測器在室溫下量測氨氣上,有著相當優異的表現。

      Surface acoustic wave (SAW) devices are favored for use in chemical sensing applications because of their small size, low cost, high sensitivity, and reliability. Details, regarding SAW devices can be found elsewhere and feasibility of using SAW structure for vapor and liquid molecule detection has been examined as well. Various effects, including mass loading, viscoelastic (elastic) effect loading and acouto-electric coupling, contribute SAW sensor response. SAW sensors vary the SAW phase velocity and attenuation as the vapor adsorbs in the chemical interface. The chemical interface is chemical or biochemical compounds over the SAW propagation path, and selectively and reversibly interacts with the specific analyte vapor and liquid molecule. This investigation is focusing on properties of the chemical or biochemical interface and establishing a complete SAW sensor system. The study was divided into several items as follows.
    1.When the polymer coating is used, however, the elastic loading also contributes to the perturbation and the mass loading analysis is not enough. Hence, the Martin and Frye’s method and Auld’s perturbation theory used for research of viscoelastic effects on SAW device are presented.
    2.The effects of polymer parameters (shear moduli and bulk moduli) in sensing application are discussed in the investigation. From the calculation result, the bulk moduli can be assumed as the constant. And the effect of imaginary of shear moduli can be neglected when the investigation is focusing on velocity change. The viscoelastic effect in Y-Z LiNbO3 with three kinds of polymer (glassy, glassy-rubbery, and rubbery) as the chemical and organophosphorous sensor is discussed in this study. The glassy-rubbery film seems like a good choice for SAW sensor application.
    3.The viscoelastic effect in ST-quartz is also discussed in this investigation. From the calculation result, when sensitivity, acoustic wave dissipation and temperature stability are all considered in gaseous phase detection, the optimum suggestion of SAW sensor design should include glassy-rubbery polymer as the chemical interface and ST-X quartz as the substrate.
    4.The influences of environment factors (for example humidity and ethanol) are also investigated. When the ST-X quartz is used as the substrate of SAW sensor, the operating frequency ranges with negligible humidity effect in common environment are 105-130MHz, 125-155MHz, and 140-175MHz for FPOL films of thickness 0.02, 0.017, and 0.015m, respectively. For suppressing humidity interference, a higher operating frequency of the SAW sensor is better to be used in the drier humidity.
    5.The Rayleigh-wave presents the very high decay and the SH-SAW presents a less energy decay when operating in liquid phase. For this reason, the SH-SAW device is selected to be used in gaseous and liquid phase application and The Y36o-X LiTaO3 was selected as the substrate of the SH-SAW sensor chip.
    6.For SH-SAW sensor chip design, the photosensitive polyimide is used to protects the IDTs and reflector of SH-SAW sensor. Otherwise, isolation gap and independent ground pad are applied in the SH-SAW sensor chip to reduce the noise influence. For SH-SAW sensor system design, the temperature un-stability is solving by a precious temperature controller and a mathematic temperature compensation method. A novel steady on SH-SAW sensor system is developed in this investigation.
    7.This improved SH-SAW sensor system was applied in ethanol vapor detection and liquid identification. The response to 8.75% ethanol was 103.5ppm and reversible clearly and the noise level was 0.7ppm. Hence, the signal to noise ratio was about 148. Besides, it clearly identified the saline solution, ion supply water, and orange juice. The long-time stability is also verified.
    8.The conductivity polymer is successfully used in SH-SAW sensor chip as the ammonia sensor and the conductivity polymer is polyaniline. The sensor presented a sensitivity of 0.23 deg/ppm at 25oC and the minimum detection level was estimated to be 0.07 ppm at 25oC. However, the SH-SAW coated with PANI exhibited an excellent response for detecting ammonia at room temperature.

    Abstract (Chinese Version) I Abstract (English Version) IV Content VII Table Captions XII Figure Captions XIII Chapter 1 General Introduction 1 1-1 History of Surface Acoustic Wave Device 1 1-2 Surface Acoustic Wave Sensor 2 1-3 Outline of the Thesis 3 Chapter 2 Fundamental and Theory 6 2-1 Wave Propagation in an Elastic Medium 6 2-2 Stress and Strain 7 2-3 Piezoelectricity 8 2-4 Surface Acoustic Wave (SAW) Device 10 2-4-1 Surface acoustic wave device 10 2-4-2 Electromechanical coupling coefficient K2 11 2-4-3 Type of surface acoustic wave 12 2-5 Surface Acoustic Wave Sensor 13 2-6 Viscoelastic Effects of Surface Acoustic Wave Gas Sensor 14 2-6-1 Viscoelastic Effects of Polymer Coatings on Surface Acoustic Wave 14 2-6-2 Vapor sorption 18 2-6-3 Linear Solvation Energy Relationship (LSER) and Partition Coefficient 18 2-7 Perturbation Analysis of Substrate/Dilute Electrolyte Interface 20 Chapter 3 Properties of Surface Acoustic Wave Sensor 22 3-1 Effect of Viscoelastic Coating on Y-Z LiNbO3 as Vapor Sensor 22 3-1-1 Simulation for changing coating film thickness 22 3-1-2 Simulation for vapor sorption 23 3-1-3 Simulation for frequency characteristic of gas sorption 24 3-1-4 Summary 25 3-2 Viscoelastic Properties of SAW Organophosphorous Vapor Sensor 25 3-2-1 Simulation of varying thickness of glassy, glassy-rubbery and rubbery polymer films 25 3-2-2 Simulation of vapor sorption of glassy, glassy-rubbery by rubbery polymer films 26 3-2-3 Simulation of environmental humidity factor and ethanol inference vapor with glassy, glassy-rubbery and rubbery polymer films 27 3-2-4 Summary 28 3-3 Effect of Viscoelastic Coating on ST-X Quartz as Chemical Sensor 28 3-3-1 Simulation before the vapor adsorption 29 3-3-2 Simulation after the vapor adsorption 30 3-3-3 Summary 32 3-4 SAW Organophosphorous Compound Sensor with No Humidity Interference 33 3-4-1 Result and Discussion 33 3-4-2 Summary 35 3-5 Theoretical Analysis of Metal Film on SH-SAW Sensor 35 3-5-1 Theory 36 3-5-2 The mass loading of metal layer before DMMP absorption 37 3-5-3 The influence of metal thickness on the velocity shift after DMMP absorption 38 3-5-4 The effect of selective film FPOL thickness on the detection after DMMP absorption 38 3-5-5 Summary 39 Chapter 4 SH-SAW Sensor Chip and System Design 40 4-1 SH-SAW Sensor Chip Design 40 4-1-1 Substrate 40 4-1-2 Parameters of SH-SAW sensor chip design 41 4-1-3 Protection Layer 42 4-1-4 Process 42 4-1-5 Package 42 4-1-6 Electrical Property 43 4-1-7 Discussion 43 4-2 SH-SAW Sensor System Design 44 4-2-1 SH-SAW sensor system problem 44 4-2-2 Improving SH-SAW sensor system problem 44 4-2-3 Temperature calibration method 46 4-2-4 Summary 47 Chapter 5 Experiment of SH-SAW Sensor Chip and System 49 5-1 Ethanol Vapor Detection 49 5-2 Identification of the Liquid 51 5-3 Using SH-SAW with Polyaniline Film as Ammonia Sensor 52 5-3-1 Theroy 52 5-3-2 Experimental 53 5-3-3 Results and Discussion 54 5-3-4 Conclusion 55 Chapter 6 Conclusion and Future Work 56 6-1 Conclusion 56 6-2 Future Work 59 Reference 61 Table 68 Figure 74 Publication List 184

    [1] J. Curie and P. Curie, Bull. Soc. Min. France, 3, pp.90, 1880
    [2] W. G. Hankel, Abh. Sächs, 12, pp.547, 1881
    [3] W. G. Hankel, Ber. Sächs, 33, pp.52, 1881
    [4] L. Rayleigh, “On waves propagated along the plane surface of an elastic solid”, Proc. London Math. Soc., 17, pp.4, 1885
    [5] A. Langevin and A. Moulin, J. Phys., 8, pp.257, 1937
    [6] W. G. Cady, Phys. Rev., 17, pp.531, 1921
    [7] R. M. White and F. W. Voltmer, “Direct Coupling to Surface Acoustic Wave”, Appl. Pys. Lett. 7, pp.314, 1965
    [8] D. P. Morgam, Surface-Wave Deivces for Signal Processing, Elsevier Science, New York, 1985
    [9] M. Feldman and J. Hénaff, Surface Acoustic Waves for Signal Processing, Artech House, Boston, MA, 1989
    [10] C. K. Campbell, Surface Acoustic Wave Devices for Mobile and Wireless Communications, Academic Press, New York, 1998
    [11] K. Y. Hashimoto, Surface Acoustic Wave Devices in Telecommunications: Modeling and Simulation, Springer, New York, 2000
    [12] C. C. W. Ruppel and T. A. Fjeldly, Advances in Surface Acoustic Wave Technology, Systems and Applications, World Scientific, Singapore, 2000
    [13] W. H. King, “Piezoelectric sorption detector”, Anal. Chem. 36, pp.1735, 1964
    [14] H. Wohltjen and R. Dessy, Anal. Chem., 51, pp.1458, 1979
    [15] H. Wohltjen and R. Dessy, Anal. Chem., 51, pp.1465, 1979
    [16] H. Wohltjen and R. Dessy, Anal. Chem., 51, pp.1470, 1979
    [17] D. S. Ballantune, S. J. martin, H. Wohltjen, R. M. White, E. T. Zellers, etc., Acoustic Wave Sensors: Theory, Design, and Physoco-Chemical Applications, Academic Press, San Diego, 1997.
    [18] M. Thompson and D. C. Stone, Surface-Launched Acoustic Wave Sensors – Chemical Sensing and Thin-Film Characterization, John Wiley & Sons, Inc., New York, 1997.
    [19] E. Benes, M. Gröschl, F. Seifert and A. Pohl, “Comparison Between BAW ans SAW Sensor Principles”, IEEE Trans. Ultrason. Ferroelect., Freq. Contr.. 45, No. 5, pp.1314, 1998
    [20] R. W. White, “Acoustic Sensors of Physical, Chemical and Biochemical Application”, Freq. Cont. Symp., Proc.1998 IEEE International, May , pp.587, 1998
    [21] M. S. Nieuwenhuizen and V. Venema, Sensors Material 1 , pp.261, 1989
    [22] C. G. Fox and J. F. Alder, Analyst 114, pp.997, 1989
    [23] A. Cenema, E. Nieuwkoop, A. W. Barendsz and M. S. Nieuwenhuizen, Sensors and Actuators B 11, pp.45, 1987) 45
    [24] M. S. Nieuwenhuizen and A. J. Nederl, Sensors and Actuators B 2, pp.97, 1990
    [25] M. S. Nieuwenhuizen and L. L. N. Harteveld, Sensors and Actuators B 40, pp.167, 1997
    [26] N. M. Tashtoush, J. D. N. Cheeke and N. Eddy, Sensors and Actuators B 49, pp.218, 1998
    [27] M. Fang, K. Vetelino, M. Rothery, J. Hines and G. C. Frye, Sensors and Actuators B 59, pp. 155, 1999
    [28] A. J. Ricco and S. J. Martin, Thin Solid Films 206, pp.94, 1991
    [29] V. I. Ansimkin, I. M. Kotelyanskii, V. I. Fedosov, C. Caliendo, P. Veratdi and R. Verona, Proc. IEEE Ultrason. Symp., pp. 515, 1995
    [30] V. I. Ansimkin, I. M. Kotelyanskii, V. I. Fedosov, C. Caliendo, P. Veratdi and R. Verona, IEEE Ultrason. Symp., pp.94, 1996
    [31] M. Penza, E. Milella and V. I. Ansimkin, IEEE Trans. Ultrason. Ferroelect., Freq. Contr. 45, pp. 1125, 1998
    [32] Y. N. Vlassov, A. S. Kozlov, N. S. Pashchin and I. D., “Precision SAW Pressure Sensors”, Freq. Contr. Symp., 1993 Proc. IEEE International, June, pp. 665, 1993
    [33] H. Scherr., G. Scholl, F. Seifert and R. Weigel, “Quartz Pressure Sensor Based on SAW Reflective Delay Line”, Proc. IEEE Ultrason. Symp., 1, pp. 347, 1996
    [34] G. Schimetta, F. Dollinger, G. Scholl and R. Weigel, “Wireless Pressure and Tempertature Measurement Using a SAW hybrid sensor”, Proc. IEEE Ultrason. Symp. 1, pp. 445, 2000
    [35] Q. Jiang, X. M. Yang, H. G. Zhou and J. S. Yang, “Analysis of Surface Acoustic Wave Pressure Sensors”, Sensor & Actuators A 118, pp.1, 2005
    [36] C. Y. Shen, C. P. Huang and H. C. Chuo, “The Improved Ammonia Gas Sensors Constructed by L-glutamic Acid Hydrochloride on Surface Acoustic Wave Devices”, Sensor & Actuators B 84, pp. 231, 2002
    [37] N. D. Dominique and P. E. Fabienne, “Polyaniline as a New Sensitive Layer for Gas Sensors”, Analytica Chimica Acta 475, pp.1, 2003
    [38] T. Nomura, K. Oofuchi, T. Yasuda and S. Furukawa, “SAW Humidity Sensor using Dielectric Hygroscopic Polymer Film”, Proc. IEEE Ultrason. Symp., pp. 503, 1994
    [39] J. D. N. Cheeke, N. Tashtoush and N. Eddy, “Surface Acoustic Wave Humidity Sensor Based On the Changes in the Viscoelastic Properties of a Polymer Film”, Proc. IEEE Ultrason. Symp., pp.515, 1996
    [40] J. Kondoh, T. Muramatsu, T. Nakanishi, Y. Matsui and S. Shiokawa, “Development of Practical Surface Acosutic Wave Liquid Sensing System and its Application for Measurement of Japanese Tea”, Sensors and Actuators B 92, pp.191, 2003
    [41] T. Wessa, M. Rapp and H. Sigrist, “Immunisensing of Photoimmobilized Proteins on Surface Acoustic Wave Sensors”, Colloids and Surfaces B: Biointerfaces 15, pp.139, 1999
    [42] D. D. Stubbs, S. H. Lee and W. D. Hunt, “Molecular Recognition for Electronic Noses Using Surface Acoustic Wave Immunoassay Sensors”, IEEE Sensors Journal 2, No. 4, pp. 294, 2002
    [43] A. V. mamishev, K. Sundara-Rajan, F. Yang, Y. Du and M. Zahn, “Interdigital Sensors and Transducers”, Proc. of IEEE, 92, Issue 5, pp.808, 2004
    [44] S. M. Sze., Semiconductor Sensors, John Wiley & Sons, Inc., NY, 1994
    [45] H. Wohltjen, A. W. Snow, W. R. Barger and D. S. Ballantine, IEEE Trans. Ultrason. Ferroelect. , Freq. Contr., 34, pp.172, 1987
    [46] M. Penza, E. Milella and V. I. Anisimkin, “Gas Sensing Properties of Langmuir-Blodgett Polypyrrode Film Investigated by Surface Acoustic Waves”, IEEE Trans. Ultrason. Ferroelect., Freq. Contr., 45, pp.1125, 1998
    [47] J. J. Caron, R. B. Haskell, P. Benoit and J. F. Vetelino, “ A Surface Acoustic Wave Mercury Vapor Sensor”, IEEE Trans. Ultrason. Ferroelect., Freq. Contr., 45, pp.1393, 1998
    [48] T. Nomura et al.: IEEE Trans. Ultrason. Ferroelect., Freq. Contr., 45, pp.1261, 1998
    [49] S. J. Martin and G. C. Frye, “Dynamics and Response of Polymer-Coated Surface Acoustic Wave Devices: Effect of Viscoelastic Properties and Film Resonance”, Anal. Chem. 66, pp. 2201, 1994
    [50] B. A. Auld, Acoustic Fields and Waves in Solid, Krieger Pub., Malabar 2nd, 1990.
    [51] D. Rebiére, C. Déjous, J. Pistré, R. Planade J. F. Lipskier and P. Robin, “surface Acoustic wave detection of organophosphorus compounds with fluoropolyl coatings”, Sensors and Actuators B 43, pp.34, 1997
    [52] V. I. Anisimkin, V. I. Fedosov, R. G. Krystal, A. V. Medved, V. E. Zemlyakov, and E. Verona, “Integrated Array of SAW Sensors for Gas Analysis”, 1998 IEEE Symposium, pp.529, 1998
    [53] J. Filipiak and C. Kopycki, “Surface Acoustic Waves for the Detection of small vibration”, Sensor and Actuators 76, pp.318, 1999
    [54] A. P. Campitelli, W. Wlodarski, and M. Houimmady, Identification of Natural Spring Water Using Shear Horizontal SAW Based Sensors, Sensors and Actuators B 49, pp.195, 1998
    [55] C. Caliendo, A. D’Amico, P. Verardi, and E. Verona, K+ Detection Using Shear Horizontal Acoustic Mode, in: IEEE Ultrasonics Symposium, pp.383, 1990
    [56] J. Kondoh, Y. Matsui, and S. Shiokawa, SH-SAW Biosensor Based on pH Change, in: IEEE Ultrasonics Symposium, pp.337, 1993
    [57] E. Dieulesaint and D. Royer, Elastic Wave in Solids: Application to Signal Processing, John Wiley & Sons, Inc., New York, 1980
    [58] M. Lewis, “Surface Skimming Bulk Wave, SSBW”, Proc. IEEE Ultrason. Symp., pp.744, 1977
    [59] T. I. Browing, D. J. Gunton, M. F. Lewis and C. O. Newton, “Bandpass Filters Employing Surface Skimming Bulk Waves”, Proc. IEEE Ultrason. Symp. , pp.753, 1977
    [60] A. Renard, J. Henaff and B. A. Auld, “SH Surface Wave Propagation on Corrugated Surfaces of Rotated Y-cut Quartz and Berlinite Crystals”, Proc. IEEE Ultrason. Symp. , pp.123, 1981
    [61] M. J. Kamlet, R. M. Doherty, J-L. M. Abboud, M. H. Avraham and R. W. Taft, CHEMTECH 17, pp.566, 1987
    [62] M. H. Abraham, P. L. Grellier, R. A. McGill, R. M. Doherty, M. J. Kamlet, T. N. Hall, R. W. Taft, P. W. Carr and W. J. Koros, Polymer 28, pp.1363, 1987
    [63] M. H. Abraham, Chem. Soc. Revs. , pp.73, 1993
    [64] R. A. McGill, M. H. Abraham, J. W. Grate, “Choosing Polymer Coatings for Chemical Sensors”, CHEMTECH, pp.27, 1994
    [65] F. Josse, Z. A. Shana, D. T. Haworth, S. Liew and M. Grunze, “On the use ZX-LiNbO3 Acoustic Plate Mode Devices as Detectors for Dilute Electrolytes”, Sensor and Actuator B 9, pp.97, 1992
    [66] J. Kondon, S. Shiokawa, M. Rapp and S. Stier, “Simulation of Viscoelastic Effercs of Polymer Coatings on Surface Acoustic Wave Gas Sensor under Consider of Film Thickness”, Japanese. J. Appl. Phys. 37, No. 5B, pp. 2842, 1998
    [67] J. J. Campbell and W. R. Jones, “A Method Estimating Optional Crystal Cuts and Propagation Directions for Excitation of Piezoelectric Surface Wave”, IEEE Trans. On Solid and Ultrasonic, SU-15, 4, pp. 209, 1968
    [68] Y. T. Shen, C. Y. Shen and L. Wu, “Design of ST-cut Quartz Surface Acoustic Wave Chemical Sensors”, Sensors and Actuators B 85, pp.277, 2002
    [69] C. Y. Shen, Y. T. Shen and L. Wu, “Viscoelastic Properties of Polymer Films on Surface Acoustic Wave organophosphorous Vapor Sensors”, J. Mat. Sci. 37, pp.295, 2002
    [70] J. Grate, M. Klusty, R. A. McGill, M. H. Abraham, G. Whiting and J. Andonian-Haftvan, Anal. Chem. 64, pp.610, 1998
    [71] G. W. C. Kaye and T. H. Laby, Tables of Physical and Chemical Constants and Some Mathematical Functions”, Longman, London, 1986
    [72] F. Josse, F. Bender, R. W. Cernosek, and K. Zinszer, Proc. 2001 IEEE International Frequency Control Symposium, pp.454, 2001
    [73] A. J. Ricco, The Electrochemical Society Interface, pp.38, 1994
    [74] L. Wu, F. C. Chang, Y. T. Shen, M. S. Young, Alex C.S. Huang, 5th East Asian Conference on Chemical Sensors, Dec. 4-7 (2001) 366
    [75] C. Nylaner, M. Armgarth and I. Lundstrom: Proc. of the Int. Meeting on Chemical Sensors, 1983, Fukuoka, Japan, pp.203, 1983
    [76] N. M. Ratcliffe, Anal. Chem. Acta 239, pp.257, 1990
    [77] F. Selapinar, L. Toppare, U. Akbulut, T. Yalcin and S. Suzer, Synth. Met. 68, pp.109, 1995
    [78] Y. Sakai, Y. Sadaoka, and M. Matsuguchi, Proc. of the 3rd East Asia Conf. on Chemical Sensors, 1997, Seoul, South Korea, pp.85, 1997
    [79] J. J. Miasik, A. Hooper, and B. C. Tofield, J. Chem. Soc., Faraday Trans. 82, pp.1117,1986
    [80] T. Hanawa and H. Yoneyama, Synth. Met. 30, pp.341, 1989
    [81] A. L. Kukla, Yu. M . Shirshov and S. A. Piletsky, Sensors and Actuators B 37, pp.135, 1996
    [82] M. E. Nicho, M. Trejo, A. Garcia-Velenzuela, J. M. Saniger, J. Palacios and H. Hu, Sensors and Actuators B 76, pp.18, 2001
    [83] M. Matsuguchi, A. Okamoto and Y. Sakai, Sensors and Actuators B 94, pp. 46, 2003

    下載圖示 校內:立即公開
    校外:2005-07-19公開
    QR CODE