| 研究生: |
陳奕璁 Chen, I-Tsung |
|---|---|
| 論文名稱: |
雞、鴨蛋白介電層於有機場效電晶體及金屬奈米粒子於增益蛋白螢光之研究 Chicken, Duck Albumen Dielectrics in Organic Field-Effect Transistors and Enhancement Photoluminescence of Albumen by Metal Nanoparticles |
| 指導教授: |
郭宗枋
Guo, Tzung-Fang |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 光電科學與工程學系 Department of Photonics |
| 論文出版年: | 2012 |
| 畢業學年度: | 100 |
| 語文別: | 中文 |
| 論文頁數: | 132 |
| 中文關鍵詞: | 熱處理 、變性 、蛋白螢光 、侷域性表面電漿共振 |
| 外文關鍵詞: | Thermal treatment, Denaturation, Albumen fluorescence, Localized surface plasmon resonance |
| 相關次數: | 點閱:86 下載:8 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文致力於探討熱處理對蛋白介電層之影響,及利用摻混金奈米粒子調變蛋白螢光之研究。蛋白場效電晶體方面,本研究探討熱處理對於電性之貢獻機制;結果發現,變性後其電性發生衰減,與未變性之元件特性衰退逾30%,此因熱處理會改變蛋白介電層之表面能,進而影響五環素之結晶所造成;另外,本論文亦探討雞、鴨蛋白介電層之電性差異,發現鴨蛋白元件之電性表現遠優於雞蛋白元件,不僅電流有近兩倍的表現,載子遷移率也提升至0.15 cm^2/Vs。蛋白螢光方面,本研究利用蛋白作為摻混金奈米粒子之介質,大幅改善金奈米粒子容易聚集之缺點,並探討金奈米粒子與蛋白之交互作用關係;另外,分佈均勻之金奈米粒子受光激發後產生侷域性表面電漿共振,並增益蛋白之螢光特性,且調幅達到八倍。
This thesis aims to investigate the thermal treatment on the albumen dielectrics, and use of blending gold nanoparticles modulation of albumen fluorescence. On albumen field-effect transistors, the study of thermal treatment for the contribution of the electrical mechanism; The results showed that the denaturation of its attenuation electrical performance, a recession of more 30% than nature device characteristics due to thermal treatment will change the albumen dielectrics surface energy, thereby affecting the crystallization of pentacene; the papers also explore the chicken. duck albumen dielectrics differences, duck albumen devices of the electrical performance is far better than the chicken, not only the current nearly twice, but the carrier mobility increased to 0.15 cm^2/Vs. Aspects of albumen fluorescence, the use of albumen as a blending medium of gold nanoparticles significantly improve the aggregation of gold nanoparticles, and to explore the interactions between gold nanoparticles and albumen; In addition, the distribution uniformity of nanoparticles excited by photoluminescence to induce localized surface plasmon resonance, its gain the albumen fluorescence characteristics, and amplitude modulation to achieve an eight-fold.
1.M. Irimia-Vladu, N. S. Sariciftci, and S. Bauer, “Exotic materials for bio-organic electronics,” J. Mater. Chem. 21, 1350-1361 (2011)
2.M. Irimia-Vladu, P. A. Troshin, M. Reisinger, G. Schwabegger, M. Ullah, R. Schwoediauer, A. Mumyatov, M. Bodea, J. W. Fergus, V. F. Razumov, H. Sitter, S. Bauer, and N. S. Sariciftci, “Environmentally sustainable organic field effect transistors,” Organic Electronics 11, 1974-1990 (2010)
3.M. E. Roberts, M. C. LeMieux, A. N. Sokolov, and Z. Bao, “Self-Sorted Nanotube Networks on Polymer Dielectrics for Low-Voltage Thin-Film Transistors,” Nano Lett. 9, 7 (2009)
4.D. J. Lipomi, B. C.-K. Tee, M. Vosgueritchian, and Z. Bao, “Stretchable Organic Solar Cells,” Adv. Mater. 23, 1771-1775 (2011)
5.D. J. Lipomi, M. Vosgueritchian, B. C.-K. Tee, S. L. Hellstrom, J. A. Lee, C. H. Fox1, and Z. Bao, “Skin-like pressure and strain sensors based on transparent elastic films of carbon nanotubes,” Nature Nanotech. 6, 788–792 (2011)
6.B. Singh, N. S. Sariciftci, J. G. Grotea, and F. K. Hopkins, “Bio-organic-semiconductor-field-effect-transistor based on deoxyribonucleic acid gate dielectric,” J. Appl. Phys. 100, 024514 (2006)
7.C.-H. Wang, C.-Y. Hsieh, and J.-C. Hwang, “Flexible Organic Thin-Film Transistors with Silk Fibroin as the Gate Dielectric,” Adv. Mater. 23, 1630-1634 (2011)
8.J.-W. Chang, C.-G. Wang, C.-Y. Huang, T.-D. Tsai, T.-F. Guo, and T.-C. Wen, “Chicken Albumen Dielectrics in Organic Field-Effect Transistors,” Adv. Mater. 23, 4077-4081 (2011)
9.P. T. Herwig, and K. A. Mllen, “Soluble Pentacene Precursor: Synthesis, Solid-State Conversion into Pentacene and Application in a Field-Effect Transistor,” Adv. Mater. 11(6), 480-483 (1999)
10.J. Zaumseil, and H. Sirringhaus, “Electron and Ambipolar Transport in Organic Field-Effect Transistors,” Chem. Rev. 107(4), 1296-1323 (2007)
11.Tsumura, H. Koezuka, and T. Ando, “Macromolecular Electronic Device: Field-Effect Transistor with a Polythiophene Thin Film,” Appl. Phys. Lett. 49, 1210-1212 (1986)
12.H. Wang, J. Wang, X. Yan, J. Shi, H. Tian, Y. Geng, and D. Yan, “Ambipolar organic field-effect transistors with air stability, high mobility, and balanced transport,” Appl. Phys. Lett. 88, 133508 (2006)
13.G. Horowitz, X. Peng, D. Fichou, and F. Garnier, “Role of Semiconductor/Insulator Interface in the Characteristics of p-Conjugated-Oligomer-Based Thin-Film Transistors,” Synth. Met. 51, 419 (1992)
14.J. H. Schön, C. Kloc, and B. Batlogg, “On the intrinsic limits of pentacene field- effect transistors,” Organic Electronics 1, 57 (2000)
15.F. Garnier, A. Yassar, R. Hajlaoui, G. Horowitz, F. Deloffre, B. Serret, S. Ries, and P. Alnot, “Molecular engineering of organic semiconductors: design of self-assembly properties in conjugated thiophene oligomers,” J. Am. Chem. Soc. 115, 8716 (1993)
16.H. E. Katz, and Z. Bao, “The Physical Chemistry of Organic Field-Effect Transistors,” J. Phys. Chem. B. 104, 671-678 (2000)
17.H. Katz, A. J. Lovinger, J. Johnson, C. Kloc, T. Siogrist, W. Li, Y.-Y. Lin, and A. Dodabalapur, “A soluble and air-stable organic semiconductor with high electron mobility,” Nature 404, 478 (2000)
18.R. Murphy, and J. M. Fréchet, “Organic semiconducting oli-gomers for use in thin film transistor,” J. Chem. Rev. 107, 1066-1096 (2007)
19.R. Newman, C. D. Frisbie, D. A. da Silva Filho, J.-L. Brédas, P. C. Ewbank, and K. R. Mann, “Introduction to Organic Thin Film Transistors and Design of n-Channel Organic Semiconductors,” Chem. Mater. 16, 4436-4451 (2004)
20.W. Brutting, “Physics of Organic Semiconductors,” Wiley-VCH: Weinheim (2005)
21.C. R. Kagan, and P. Andry, “Thin-Film Transistor,” 1st ed. New York: Marcel Dekker (2003)
22.H. Sirringhaus, N. Tessler, and R. H. Friend, “Integrated Optoelectronic Devices based on Conjugated Polymers,” Science 280, 1741-1744 (1998)
23.R. D. McCullough, “The Chemistry of Conducting Polythiophenes,” Adv. Mater. 10(2), 93-116 (1998)
24.R. Tecklenburg, G. Paasch, and S. Scheinert, “Theory of Organic Field Effect Transistors,” Adv. Mater. Opt. Electron. 8, 285-294 (1998)
25.Y. Sun, Y. Liu, and D. Zhu, “Advances in organic field-effect transistors ,” J. Mater. Chem. 15, 53 (2005)
26.G. Horowitz, “Organic Field-Effect Transistors,” Adv. Mater. 10(5), 365-377 (1998)
27.S. M. Sze, “Semiconductor Devices: Physics and Technology,” 2nd ed. Singapore: Wiley (1981)
28.M. Pope, and C. E. Sewnberg, “Electronic Processes in Organic Crystals and polymers,” 2nd ed. Oxford: Oxford University Press (1999)
29.Y. Wu, Y. Li, S. Gardner, and B. S. Ong, “Indolo[3,2-b]carbazole-Based Thin-Film Transistors with High Mobility and Stability,” J. Am. Chem. Soc. 127, 614-618 (2005)
30.A. Kraft, “Organic Field-Effect Transistors–The Breakthrough at Last,” Chem. Phys. Chem. 2, 163-165 (2001)
31.D. Dimitrakopoulos, and P. R. L. Malenfant, “Organic Thin Film Transistors for Large Area Electronics,” Adv. Mater. 14(2), 99-117 (2002)
32.J. Veres, S. Ogier, G. Lloyd, and D. de Leeuw, “Gate Insulators in Organic Field-Effect Transistors,” Chem. Mater. 16, 4543-4555 (2004)
33.Z. Bao, and J. L. Bredas, “Organic Field-Effect Transistors,” 1st ed. Boca Raton, FL: CRC (2007)
34.H. Lodish, A. Berk, P. Matsudaira, C. A. Kaiser, M. Krieger, and M. P. Scott, “Molecular cell biology,” 5th ed. W. H. Freeman and Company (2004)
35.T. E. Creighton, “Protein: Structures and molecular proteins,” 2nd ed. W. H. Freeman and Company (2003)
36.C. Branden, and J. Tooze, “Introduction to Protein Structure,” 2nd ed. Graland (1999)
37.G. Georgiou, and E. D. Bernardez-Clerk, “Protein Refolding,” Am. Chem. Soc 6, 1-49 (1991)
38.R. Hardison, “Hemoglobine from bacteria to man: Evolution of different patterns of gene expression,” J. Exp. Biol. 201, 1099 (1998)
39.A. H. Clark, “Structural and mechanical properties of biopolymer gels. In Food Polymers, Gels, and Colloids,” The Royal Society of Chemistry, 323-328 (1991)
40.Y. Hsieh, and J. M. Regenstein, “ Texture changes on heating spray-dried egg white,” J. Food Sci. 54, 1206-1208 (1989)
41.Y. Mine, T. Noutomi, and N. Haga, “ Thermally induced changes in egg white proteins,” J. Agric. Food Chem. 38, 2122-2125 (1990)
42.M. Hermansson, “Aggergation and denaturation involved in gel formation. In Functionality and Protein Structure,” Am. Chem. Soc. 92, 81 (1979)
43.H. Hatta, N. Kitabatake, and E. Doi, “Turbidity and hardness of a heat-induced gel of hen egg ovalbumin,” Agric. Biol. Chem. 50, 2083-2087 (1986)
44.N. Kitabatake, A. Shimizu, and E. Doi, “Comparison of transparent gels with turbid gels prepared from egg white:creep analysis of gels,” J. Food Sci. 54, 1209-1212 (1989)
45.J. C. Cheftel, J. L. Cuq, and D. Lorient, “Amino acids, peptides and proteins in Food Chemistry.,” Mol. Biol. 1, 290-294 (1985)
46.M. Hermansson, “Physico-chemical aspects of soy proteins structure formation,” J. Texture Stud. 9, 33-58 (1987)
47.Y. Mine, “Egg Bioscience and Biotechnology,” 1st ed. New Jersey: Wiley-interscience (2008)
48.K. K. Turoverov, S. Yu, and G. P. Pinaev, “In Methods Of Biochemical Analysis,” Febs Lett. 62, 4-7 (1976)
49.G. Hild, M. Nyitrai, R. Gharavi, B. Somogyi, and J. Belagyi, “Fluorescence quenching of the tryptophan emission from the F- and G- forms of actin,” Journal of Photochemistry and Photobiology B: Biology 35,175-179 (1996)
50.M. Shtein, J. Mapel, J. B. Benziger, and S. R. Forrest, “Effects of film morphology and gate dielectric surface preparation on the electrical characteristics of organic-vapor-phase-deposited pentacene thin-film transistors,” Appl. Phys. Lett. 81(2), 268-270 (2002)
51.L. Wang, W.-J. Zhao, and W.-H. Tan, “Bioconjugated Silica Nanoparticles: Development and Applications,” Nano Res 1, 99-115 (2008)
52.J.-W. Liaw, J.-H. Chen, and C.-S. Chen, “Enhancement or quenching effect of metallic nanodimer on spontaneous emission,” J. Quantitative Spectroscopy & Radiative Transfer 111, 454-465 (2010)
53.陳奕璁, “影像式橢圓偏光術在表面電漿共振生物感測器之研究,” 國立聯合大學光電工程學系專題報告書 (2010)
54.M. Irimia-Vladu, E. D. Głowacki, P. A. Troshin, G. Schwabegger, L. Leonat, D. K. Susarova, O. Krystal, M. Ullah, Y. Kanbur, M. A. Bodea, V. F. Razumov, H. Sitter, S. Bauer, and N. S. Sariciftci, “Indigo - A Natural Pigment for High Performance Ambipolar Organic Field Effect Transistors and Circuits,” Adv. Mater. 24, 375–380 (2012)
55.Y.-C. Hung, W.-T. Hsu, T.-Y. Lin, and L. Fruk, “Photoinduced write-once read-many-times memory device based on DNA biopolymer nanocomposite,” Appl. Phys. Lett. 99, 253301 (2011)