簡易檢索 / 詳目顯示

研究生: 莊郁亭
Chuang, Yu-Ting
論文名稱: 以射頻磁控濺鍍法成長之氧化鋅薄膜特性 及其在拉福波感測器上之應用
Characterization of ZnO Thin Film by Radio Frequency Magnetron Sputtering and Its Applications on Love Wave Sensors
指導教授: 朱聖緣
Chu, Sheng-Yuan
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2004
畢業學年度: 92
語文別: 中文
論文頁數: 108
中文關鍵詞: 拉福波感測器磁控濺鍍法氧化鋅
外文關鍵詞: Zinc oxide, Love wave sensor, Radio frequency sputtering
相關次數: 點閱:79下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   本論文主要以射頻磁控濺鍍法,研究在石英(42°45 ST-cut Quartz)與鉭酸鋰(36°YX LiTaO3)基板上成長軸C軸(002)軸向的氧化鋅(ZnO)薄膜。文獻中顯示,在石英基板上成長(002)軸向的氧化鋅薄膜較為常見,但鮮少在鉭酸鋰基板上成長(002)軸向的氧化鋅薄膜,多半為(110)軸向,所以我們設計不同的製程參數:控制氬氣與氧氣的比例、腔體內壓力、濺鍍功率、濺鍍時間、靶材成分、改變基板溫度及退火處理溫度,分別在兩種基板上成長出具有(002)軸向的氧化鋅薄膜,利用X光繞射儀(XRD)、掃描式電子顯微鏡(SEM)、原子力顯微鏡(AFM)檢測薄膜晶體的結構、內應力、與薄膜表面粗糙度。
      將此薄膜應用於以42°45 ST-cut Quartz、36° YX LiTaO3為基板的拉福波(Love wave)感測器上,成長不同鋰、鎂掺雜量之氧化鋅薄膜,研究不同參雜量的電阻率和靈敏度,在鋰1.5 mol%、鎂1 mol%,有最大電阻率,相較於只有掺雜鋰1.5 mol%所成長的氧化鋅薄膜,電阻率約提升了100倍,且得到較佳之靈敏度。在此兩種基板上,成長不同厚度的氧化鋅薄膜,研究不同膜厚對元件頻率響應、機電耦合係數、靈敏度和溫度頻率係數的影響:在石英基板上,厚度與波長比值t/λ=0.033(膜厚1.35μm,中心頻率111.9MHz,波長40μm)時,靈敏度最大,而當薄膜成長五小時,其溫度頻率係數近乎為0;在鉭酸鋰基板上,當厚度與波長比值t/λ=0.058(膜厚2.31μm,中心頻率99.4MHz,波長40μm)時,顯示其靈敏度最大。另外,在不同基板溫度下,成長氧化鋅薄膜於此兩種基板上,研究不同基板溫度對元件頻率響應、表面粗糙度及靈敏度的影響:在石英基板上,基板不加溫時,有最小表面粗糙度2.273nm,最大靈敏度-8.71× 10-8 m2 s kg-1;在鉭酸鋰基板上,基板不加溫時,最小表面粗糙度6.007nm,最大靈敏度為-5.30× 10-8 m2 s kg-1;可知在相同條件下,以石英為基板的拉福波感測器比以鉭酸鋰為基板的拉福波感測器有更好的靈敏度。

      Poly-crystal ZnO films with c-axis (002) orientation have been successfully grown on the ST-cut quartz substrate by RF magnetron sputtering technique. It has been rarely reported to deposit c-axis (002) orientation ZnO film on the 36° YX-LiTaO3 substrate. So far, most ZnO films on 36° YX-LiTaO3 substrate are obtained (110) orientation. We try to deposit c-axis (002) orientation ZnO film on the 42°45 ST-cut quartz and 36° YX-LiTaO3. The deposited films were characterized as a function of argon-oxygen gas flow ratio, RF power, chamber pressure, target component, substrate temperature, and annealing temperature. Crystalline structures, stress and surface roughness characteristics of the films were investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM) and atomic force microscopy (AFM) measurement.
      We grow the films on the substrate (ZnO/IDT/quartz, ZnO/IDT/LiTaO3) as a Love wave sensor. With the different doping ratio of Li and Mg, the resistivity and sensitivity are measured. The resistivity of Li 1.5 mol% and Mg 1 mol% doped ZnO films is increased with two orders to only Li 1.5 mol% doped. The sensitivity is also larger than that of Li 1.5 mol% doped. An experimental study of Love wave devices based on ST-cut quartz, YX-LiTaO3 with different thickness of ZnO films is also presented. Frequency response, electromechanical coupling coefficient, sensitivity, and temperature coefficient of frequency have been analyzed as a function of layer thickness. On ZnO/IDT/quartz structure, the maximum sensitivity is obtained for 1.35�m ZnO film with the center frequency of 111.9MHz, and the temperature coefficient of frequency closed to zero is obtained for 2.31 m ZnO film with the center frequency of 99.4MHz for a wavelength of 40�m, respectively. Besides, the Love wave sensor has higher sensitivity for ZnO films sputtered on unheated substrate than on heated substrate. The best sensitivity of the ZnO/IDT/quartz structure is -8.71× 10-8 m2 s kg-1 with the film surface roughness of 2.273nm, which is larger than the best sensitivity of the ZnO/IDT/LiTaO3 structure with the sensitivity -5.30× 10-8 m2 s kg-1 and the roughness 6.007nm. It reveals that under the same conditions, Love wave sensors based on 42°45 ST-cut quartz have higher sensitivity than on the substrate of 36° YX-LiTaO3.

    中文摘要........................................................................Ⅰ 英文摘要........................................................................Ⅲ 誌謝 ......................................................................Ⅴ 目錄 ......................................................................Ⅵ 表目錄 .....................................................................Ⅹ 圖目錄..........................................................................XI 第一章 緒論 ....................................................................1 第二章 原理 ....................................................................4 2.1 壓電原理 .............................................................4 2.1.1 逆壓電效應 ....................................................5 2.1.2 逆壓電效應 ....................................................5 2.2 表面聲波元件的基板材料 ..............................................5 2.2.1 機電耦合係數 ...................................................5 2.2.2 表面聲波相速度 ..................................................6 2.2.3 溫度效應 .....................................................7 2.3 氧化鋅薄膜的結構和特性 ..............................................7 2.4 濺鍍原理 .............................................................8 2.4.1 電漿原理 .....................................................9 2.4.2 射頻濺鍍系統 ..................................................10 2.5 表面聲波 ............................................................11 2.5.1 雷利表面聲波 ..................................................11 2.5.2 剪力水平聲波 ..................................................11 2.5.3 表面漂移塊體波 .................................................12 2.5.4 拉福表面聲波 ..................................................12 第三章 實驗過程及研究方法 ....................................................14 3.1 實驗流程 ............................................................14 3.2 摻雜鋰、鎂的氧化鋅靶材配置 ...........................................15 3.3 基板的選擇及清洗 ................................................15 3.3.1 石英(42°45 ST-cut Quartz) ....................................15 3.3.2 鉭酸鋰(36° YX LiTaO3) ...................................16 3.3.3 基板的清洗 ...................................................16 3.4 樣品的準備及實驗過程 ..............................................16 3.5 影響氧化鋅薄膜成長的因素 ............................................17 3.6 薄膜結構的品質分析 ...............................................18 3.6.1 X-Ray分析 ......................................................18 3.6.2 SEM和AFM的分析 ............................................19 3.6.3 應力分析 ....................................................19 3.6.4 電阻率分析 ...................................................21 3.6.5 膜厚分析 ....................................................22 3.7 拉福波感測器元件製程 ..............................................22 3.8 拉福波感測器的量測系統 .............................................23 第四章 實驗結果與討論 ......................................................25 4.1 濺渡參數對氧化鋅薄膜物理結構的影響 ...............................25 4.1.1氧氣氛比例 ...................................................25 4.1.2射頻能量 ....................................................26 4.1.3腔體壓力 ....................................................28 4.1.4薄膜成長時間 ..................................................29 4.1.5基板溫度 ....................................................30 4.1.6退火溫度 ....................................................33 4.1.7不同摻雜的氧化鋅薄膜 ..............................................36 4.2拉福波感測器的分析 ...............................................37 4.2.1不同摻雜的氧化鋅薄膜 ..............................................37 4.2.2不同膜厚 ....................................................37 4.2.3基板溫度 ....................................................40 第五章 結論 ...................................................................42 5.1氧化鋅材料特性 .........................................................42 5.1.1 XRD ........................................................42 5.1.2 SEM、AFM .......................................................43 5.2拉福波感測器 ..........................................................43 參考文獻 ....................................................................45 附表與附圖 ...................................................................49

    [1] S. Wanuga, T. A. Midford and J. P. Dietz, Ultrasonics Symposium, 1965
    [2] G. A. Rozgonyi and W. J.Polito, Preparation of ZnO Thin films by Sputtering of the Compound in oxygen and argon, Appl. Phy. Lett. 8, p. 220-221, 1966
    [3] N. F. Foster and G. A. Rozgonyi, Zinc Oxide Films Transducers, Appl. Phy. Lett. 8, p. 221-223, 1966
    [4] A. J. DeVries and R. Adler, Case History of a Surface-Wave TV IF Filter for Color TV Receivers, Proc. IEEE, 64, p. 671-676, 1976
    [5] R. M. Hays and C. S. Hartmann, Surface-Acoustic-Wave Devices for Communication, Proc. IEEE, 64, p. 652-669, 1976
    [6] M. N. Kamalasanan and Subhas Chandra, Sol-gel synthesis of ZnO thin films, Thin Solid Films 288, p. 112-115, 1996
    [7] F. D. Paraguay, W. L .Estrada, D. R. N. Acosta, E. Andrade and M. Miki-Yoshida, Growth, Structure and Optical Characterization of High Quality ZnO Thin Films Obtained by Spray Pyrolysis , Thin Solid Films 350, p. 192-202, 1999
    [8] N. Kiyoshi, S. Tatsuya and H. B. Kang, ZnO Film Growth on (011 Over-BAR 2) LiTaO3 by Electron Cyclotron Resonance-Assisted Molecular Beam Epitaxy and Determination of its Polarity, Japanese Journal of Applied Physics, Part 2, 6, p. L534-L536, 2000
    [9] M. Tadatsugu, S. Hideo, T. Shinzo and S. Hirotoshi, Transpartent and Conductive ZnO Thin Films Prepared by Atomsphreic-Pressure Chemical Vapor Deposition Using Zinc Acetylacetonate, Japanese Journal of Applied Physics, Part 2: 5B, p. L743-L746, 1994
    [10] S. Maniv and A. Zangvil, Controlled Texture of reactively RF-Sputtered ZnO Thin Films, Journal of Applied Physics 5, p. 2787-2792, 1978
    [11] M. S. Wu, W. C. Shih and W. H. Tsai, Growth of ZnO Thin Films on Interdigital Transducer/Corning 7059 Glass Substrate by Two-Step Fabrication Methods for Surface Acoustic Wave Applicatons, J. Phys D: Appl. Bhys. 31, p. 943-950, 1978
    [12] K. Y. Hashimoto, S. Ogawa, A. Nonoguchi, T. Omori and M. Yamaguchi, Preparation of Piezoelectric ZnO Films by Target Facing Type of Sputtering Method, IEEE Ultransonics Symp. Proc., p. 207-212, 1998
    [13] K. B. Sundaram and A. Khan, Characterization and Optimization of Zinc Oxide Films By RF Magnetron Sputtering, Thin Solid Films 295, p. 87-91, 1997
    [14] V. Gupta and A. Mansingh, Influence of Postdeposition Annealing on The Structural and Optical Properties of Sputtered Zinc Oxide Film, Journal of Applied Physics 2, p. 1063-1073, 1996
    [15] 莊達人編著,VLSI製造技術,高立, p. 845-870, 2000
    [16] F. V. D. Pol, Thin-Film ZnO�oProperties and Applications, Ceramic Bulletin, 69 (12), p. 1959-1965, 1990
    [17] J. W. Gardner, V. K. Varadan and O. O. Awadelkarim, Microsensors, MEMS, and Smart Devices, Wiley, p. 303-316, 2001
    [18] F. S., Hickernell, Measurement techniques for evaluating piezoelectric thin films, IEEE Ultransonics Symp. Proc., p. 235-242, 1996
    [19] J. D. Ye, S. Gu, S. Zhu, T. Chen, W. Liu, F. Qin, L. Hu, R. Zhang, Y. Shi, and Y. Zheng, Raman and photoluminescence of ZnO films deposited on Si(111)using low-pressure metalorganic chemical vapor deposition, J. Vac. Sci. Technol. A 21(4), Jul/Aug 2003
    [20] V. Gupta and A. Mansingh, Influence of Postdeposition Annealing on The Structural and Optical Properties of Sputtered Zinc Oxide Film, Journal of Applied Physics 80 (2), p. 1063-1073, 1996
    [21] John A. Thornton and D. W. Hoffman, Stress-Related Effects in Thin Films, Thin Solid Films, 171, p. 5-31, 1989
    [22] J. H. Jou, M. Y. Han and D. J. Cheng, Substrate dependent internal stress in sputtered zinc oxide thin films, Journal of Applied Physics 71, 9, p. 4333-4336, 1992
    [23] J. K. Srivastava, L. Agarwal, and A. B. Bhattachryya, Electrical Characteristics of Lithium-doped ZnO Films, J. Electrochem. Soc. 136 (136), p. 3414, 1989
    [24] P. Bonasewicz, W. Hirschwald and Neumann, Influence of surface processes on electrical, photochemical, and thermodynamical properties of zinc oxide films, J. Electrochem. Soc. 133 (11), p. 2270, 1986
    [25] M.S. Tomar, R.Melgarejo, P. S. Dobal and R. S. Katiyar, Synthesis of Zn1-xMgxO and its structural characterization, J. Mater. Res., Vol. 16, No. 4, Apr 2001
    [26] F. Herrmann, M. Weihnacht and S. Büttgenbach, Properties of sensors based on Shear-Horizontal surface acoustic waves in LiTaO3/SiO2 and quartz/SiO2 structures, IEEE Trans. Ultrasonics Freq. Control, UFFC-48, p. 268-273, 2001
    [27] W. R. Smith, H. M. Gerard, J. H. Collins, T. M. Reeder and H. J. Shaw, Analysis of interdigital surface wave transducers by use of an equivalent circuit model, IEEE Trans. on Microwave Theory and Techniques, 17, p. 856-864, 1969
    [28] F. Herrmann, M. Weihnacht and S. Büttgenbach, Properties of Shear-horizontal surface acoustic waves in different layered quartz-SiO2 structures, Ultrasonics 37, p. 335-341, 1999
    [29] C. C. Tseng, Elastic surface wave on free surface and metallized surface of CdS, ZnO, and PZT-4, Journal of Applied Physics 38 (11), p. 4281-4283, 1967
    [30] K. Ohji, T. Tohda, K. Wasa and S. Hayakawa, Highly Oriented ZnO Films by rf-sputtering of Hemispherical Electrode System, Journal of Applied Physics 47, p. 1726-1728, 1976
    [31] O. Yamazaki, T. Mitsuyu and K. Wasa, ZnO Thin-Film SAW Devices, IEEE Transactions on Sonics and Ultrasonics SU-27, NO.6, p. 369, 1980
    [32] E. D. Kolb and R. A. Laudies, Hydrothermally Grown ZnO Crystals of Low and Intermediate Resistivity, Journal of the American Ceramic Society 49 (6), p. 302, 1966
    [33] D. L. Raimondi and E. Kay, “High Resistivity Transparent ZnO Thin Films”, The Journal of Vacuum Sicence and Technology, 7, p. 96-99, 1969
    [34] Z. Wang, J. D. N. Cheeke, and C. K. Jen, Sensitivity analysis for Love mode acoustic gravimetric sensor, Appl. Phys. Lett. 64(22), p. 2940-2942, 1994
    [35] F. Herrmann, M. Weihnacht and S. Büttgenbach, Properties of Shear-horizontal surface acoustic waves in different layered quartz-SiO2 structures, Ultrasonics 37, p. 335-341, 1999
    [36] 許正源,工業材料119期, p. 79-87, 1996
    [37] M. Ylilammi, J. Ella, M. Partanen and J. Kaitila, Thin film bulk acoustic wave filter, IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, v 49, n 4, p. 535-539, 2002
    [38] M. Kadota and T. Kitamura, Influence of leaky surface acoustic wave velocity of glass substrates on frequency variation of ZnO/glass SAW filters, IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, v 46, n 4, p. 817-822, 1999
    [39] S. H. Seo, W. C. Shin and J. S. Park, A novel method of fabricating ZnO/diamond/Si multilayers for surface acoustic wave (SAW) device applications, Thin Solid Films, v 416, n 1-2, p. 190-196, 2002
    [40] P. Wu, N. W. Emanetoqlu, X. Tonq and Y. Lu, Temperature compensation of SAW in ZnO/SiO2/Si structure, Proceedings of the IEEE Ultrasonics Symposium, v 1, p. 211-214, 2001
    [41] M. H. Lee, S. M. Chanq, C. K. Park, J. B. Lee and J. S. Park, Characterization of ZnO/DLC/Si SAW devices using FCVA-produced DLC films, Proceedings of the Annual IEEE International Frequency Control Symposium, p. 70-73, 2002
    [42] S. H. Kim, J. S. Lee, H. C. Choi and Y. H. Lee, Fabrication of thin-film bulk acoustic wave resonators employing a ZnO/Si composite diaphragm structure using porous silicon layer etching, IEEE Electron Device Letters, v 20, n 3, p. 113-115, 1999
    [43] K. K. Zadeh, A. Trinchi, W. Wlodarski and A. Holland, A novel love-mode device based on a ZnO/ST-cut quartz crystal structure for sensing applications, Sensors and Actuators, A: Physical, v 100, n 2-3, p. 135-143, 2002
    [44] K. Nakamura, H. Hitazume and Y. Kawamura, Optical TE-TM mode conversion using SH-SAW in ZnO/Y-X LiNbO3, Proceedings of the IEEE Ultrasonics Symposium, v 1, p. 637-641, 1999
    [45] J. E. Lefebvre, T. Gryba and V. Y. Zhanq, SAW characteristics in a layered ZnO/GaAs structure for design of integrated SAW filters, Proceedings of the IEEE Ultrasonics Symposium, v 1, p. 261-264, 2001
    [46] N. W. Emsmetoqlu, G. Patounakis, S. Lianq, C. R. Gorla, R. Wittstruck and Y. Lu, Analysis of SAW properties of epitaxial ZnO films grown on R-Al2O3 substrates, IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, v 48, n 5, p. 1389-1394, 2001
    [47] R. O. Ndong, G. Ferblantier, M. Al. Kalfioui, A. Foucaran, Properties of RF magnetron sputtered zinc oxide thin films, Journal of Crystal Growth, v255 p. 130-135 2003
    [48] I. T. Tang, Y. C. Wang, W. C. Hwang, C. C. Hwang, N. C. Wu, M. P. Huang, Y. H. Wang, Investigation of piezoelectric ZnO film deposited on diamond like carbon coated onto Si substrate under different sputtering conditions, Journal of Crystal Growth, v252 p. 190-198, 2003
    [49] I. M. Chan, F. C. Hong, Improved performance of the single-layer and double-layer organic light emitting diodes by nickel oxide coated indium tin oxide anode, Thin Solid Films, v450 p. 304-311, 2004
    [50] S. Fujihara, C. Sasaki, T. Kimura, Effect of Li and Mg doping on mocrostruture and properties of sol-gel ZnO thin films, Journals of European Ceramic Society, v.21 p. 2109-2112, 2001
    [51] N. W. Emanetoglu, S. Muthukumar, P. Wu, R. H. Wittstruck, Y. Chen, and Y. Lu, MgxZn1-xO: A New Piezoelectric Material, IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, v.50, n.5, May 2003
    [52] D. A. Powell, K. Z. Kourosh, S. Ippolito and W. Wlodarski, A Layered SAW Device Based on ZnO/LiTaO3 for Liquid Media Sensing Applications, IEEE Ultrasonics Symposium, p. 493-496, 2002
    [53] K. K. Zadeh, A. Trinchi, W. Wlodarski, and A. Holland, A novel Love-mode device based on a ZnO/ST-cut quartz crystal structure for sensing applications, Sensors and Actuators Physics A, v.100 p. 135-143, 2002

    下載圖示 校內:2006-07-23公開
    校外:2007-07-23公開
    QR CODE