| 研究生: |
顏立維 Yen, Li-Wei |
|---|---|
| 論文名稱: |
以平均電流模式控制為基礎之最大功率追蹤光伏系統 Maximum Power Tracking with Average Current Mode Control for Photovoltaic System |
| 指導教授: |
林瑞禮
Lin, Ray-Lee |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2010 |
| 畢業學年度: | 98 |
| 語文別: | 英文 |
| 論文頁數: | 71 |
| 中文關鍵詞: | 光伏系統 、最大功率追蹤 、平均電流模式控制法 、溫度補償電路 |
| 外文關鍵詞: | Photovoltaic system, maximum power point tracking, average current-mode control, temperature compensation circuit. |
| 相關次數: | 點閱:132 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文提出一以平均電流模式控制為基礎之最大功率追蹤光伏系統。現今大部分之光伏系統係以昂貴的數位控制電路達成最大功率追蹤。因此,此新穎之最大功率追蹤電路係以類比電路取代現有之數位電路,以增進經濟效益。
藉由利用太陽能板之輸出特性,以平均電流模式控制法將可調節太陽能板之輸出電流和功率。特別地,本論文所提出之最大功率追蹤電路可以採用簡單經濟之功因修正(PFC)類比控制晶片(IC)實現。
再者,本最大功率追蹤電路包含溫度補償電路,以確保在各操作溫度之環境下,皆能具有最大功率追蹤功能。最後,實做一個具最大功率追蹤之光伏系統雛型電路,以驗證本論文所提出之理論。
This thesis presents a novel maximum power point tracking (MPPT) scheme for the photovoltaic system. Most conventional MPPT technologies in the photovoltaic system are implemented with digital control circuit, which causes the cost-consuming issue. Therefore, the proposed MPPT photovoltaic system can be implemented with analog control circuit, which is substituted for the digital control circuit.
By associating the output electrical characteristics of solar cell module, the proposed MPPT control scheme adjusts the photovoltaic current and power with average current-mode control (ACMC) scheme. Especially, this proposed MPPT control scheme with the ACMC can be simply and cost-effectively implemented with the present power-factor-correction (PFC) control ICs available on the market.
Furthermore, with considering the temperature effect on the electronic characteristics of the solar cell module, the temperature compensation circuit is associated with the MPPT circuit to ensure the claimed function even at different temperature conditions.
Finally, the prototype circuit of the 85W photovoltaic system with the proposed MPPT control scheme is built in order to validate the claimed MPPT function.
REFERENCES
[1] A. L. Fahrenbruch and R. H. Bube, Fundamentals of Solar Cells, Academic Press, New York, 1983.
[2] Pacheco, V. A. Freitas, L. C. Vieira, J. B., Jr. Coelho, E.A.A. and Farias, V. J., “Stand-alone photovoltaic energy storage system with maximum power point tracking,” IEEE Appl. Power Electron. Conf. and Expo., vol. 1, pp. 97-102, Feb. 2003.
[3] V. Salas, E. Olías, A. Barrado and A. Lazaro, “Review of the maximum power point tracking algorithms for stand-alone photovoltaic systems,” Solar Energy Materials & Solar Cells, vol. 90, pp. 1555-1578, July 2006.
[4] Trishan Esram and Patrick L. Chapman, “Comparison of photovoltaic array maximum power point tracking techniques,” IEEE Trans. Power Electron., vol. 22, no.2, pp. 439-449, June 2007.
[5] Soeren Baekhoej Kjaer, John K. Pedersen and Frede Blaabjerg, “A review of single-phase grid-connected inverters for photovoltaic modules,” IEEE Trans. Ind. Appl., vol. 41, no. 5, pp. 1292-1306, Sept./Oct. 2005.
[6] E. Koutroulis, K. Kalaitzakis, and N. C. Voulgaris, “Development of a microcontroller-based, photovoltaic maximum power point tracking control system,” IEEE Trans. Power Electron., vol. 16, no. 1, pp. 46-54, Jan. 2001.
[7] N. Femia, G. Petrone, G. Spagnuolo, and M. Vitelli, “Optimization of Perturb and Observe Maximum Power Point Tracking Method,” IEEE Trans. Power Electron., vol. 20, no. 4, pp. 963-973, July 2005.
[8] D. Sera, R. Teodorescu, J. Hantschel, and M. Knoll, “Optimized maximum power point tracker for fast-changing environmental conditions,” IEEE Trans. Ind. Electron., vol. 55, no. 7, pp. 2629-2637, Jul. 2008.
[9] T.-Y. Kim, H.-G. Ahn, S.-K. Park, and Y.-K. Lee, “A novel maximum power point tracking control for photovoltaic power system under rapidly changing solar radiation,” IEEE International Symp. Ind. Electron., 2001, pp. 1011-1014.
[10] Y. C. Kuo, T. J. Liang, and J. F. Chen, “Novel maximum-power-point tracking controller for photovoltaic energy conversion system,” IEEE Trans. Ind. Electron., vol. 48, no. 3, pp. 594-601, June 2001.
[11] M. A. S. Masoum, H. Dehbonei, and E. F. Fuchs, “Theoretical and experimental analyses of photovoltaic systems with voltage and current based maximum power-point tracking,” IEEE Trans. Energy Conversion, vol. 17, no.4, pp. 514-522, Dec. 2002.
[12] W. Wu, N. Pongratananukul, W. Qiu, K. Rustom, T. Kasparis, and I. Batarseh, “DSP-based multiple peak power tracking for expandable power system,” in Proc. Annual IEEE Appl. Power Electron. Conf. and Expo., 18th, 2003, pp. 525-530.
[13] T. Noguchi, S. Togashi, and R. Nakamoto, “Short-current pulse based adaptive maximum-power-point tracking for photovoltaic power generation system,” IEEE International Symp. Ind. Electron., 2000, pp. 157-162.
[14] C. Hua and C. Shen, “Study of maximum power tracking techniques and control of dc/dc converters for photovoltaic power system,” in Proc. Power Electron. Specialists Conf., 1998. PESC 98 Record. 29th Annual IEEE, vol.1, pp. 86-93, 17-22 May 1998.
[15] D. P. Hohm. and M. E. Ropp., “Comparative study of maximum power point tracking algorithms,” in Proc.28th IEEE Photovoltaic Specialists Conf., Sep. 2000, pp. 1699-1702.
[16] N. Femia, G. Petrone, G. Spagnuolo, and M. Vitelli, “Optimization of perturb and observe maximum power point tracking method,” IEEE Trans. Power Electron., vol. 20, no. 4, pp. 963-973, Jul. 2005.
[17] V. Salas, E. Olías, A. Barrado and A. Lázaro, “Review of the Maximum Power Point Tracking Algorithms for Stand-Alone Photovoltaic Systems,” Solar Energy Material and Solar Cells, vol. 90, no. 11, pp. 1555-1578, 6 Jul. 2006.
[18] Rodriguez, C and Amaratunga, G.A.J, “Dynamic maximum power injection control of AC photovoltaic modules using current-mode control,” Electron. Power Applications, IEE, vol. 153, no. 1, pp. 83-87, Jan. 2006.
[19] Noguchi. T., Togashi S. and Nakamoto. R., “Short-current pulse-based maximum-power-point tracking method for multiple photovoltaic-and-converter module system,” IEEE Trans. Industrial Electron., vol. 49, no.1, pp.217-223, Feb. 2002.
[20] L. H. Dixon, “Average Current Mode Control of Switching Power Supplies,” Unitrode Power Supply Design Seminar Manual, SEM700, 1990.
[21] W. Tang, F. C. Lee, and R. B. Ridley, “Small-Signal modeling of average current-mode control,” IEEE Trans. Power Electron., vol. 8, no. 2, pp 112-119, Apr. 1993.
[22] Texas Instruments, “UC3854: “Enhanced High Power Factor Preregulator,” June 1998 [Revised August 2003.]
[23] Philip C. Todd, “UC3854 controlled power factor correction circuit design,” U-134 Application Note, Texas Instruments, pp. 3-269–3-288.
[24] Texas Instruments, “TL072, Low-noise JFET-input operational amplifier” September 1978 [Revised March 2005.]
[25] Analog Device, Inc, “Signal conditioning ADC, AD7710”, 2004.
[26] International Rectifier I&R, “High and low side driver, IR2110” Datasheet, No. PD-6.011E, 2000.
[27] Texas Instruments, “DSP Controller, TMS320LF2407”, Datasheet, Revised September 2003.
[28] Microchip Technology Inc, “Microcontrollers, PIC16F87X”, Datasheet, 2001.
[29] ASEC, “ASEC-85G5S: Monocrystalline Silicon Photovoltaic Module,” ASEC, 2008.
[30] Motech, “AS125-R150: Monocrystalline Silicon Photovoltaic Module, A-Cells,” Apr., 2009.
[31] Analog Devices, Inc, “AD590: Two-Terminal IC Temperature Transducer,” 1997.
[32] Hukseflux Thermal Sensor, “LP02: solar radiation sensor compliant with ISO and WMP sraedands.”