簡易檢索 / 詳目顯示

研究生: 許宇承
Hsu, Yu-Cheng
論文名稱: 混合式可再生能源之直流微電網整合壓縮空氣儲能系統對多機電力系統之穩定度分析
Stability Analysis of a Hybrid Renewable Energy DC Microgrid Integrated Compressed Air Energy Storage Systems for Multi-machine Power Systems
指導教授: 王醴
Wang, Li
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2024
畢業學年度: 112
語文別: 中文
論文頁數: 134
中文關鍵詞: 混合式再生能源太陽能發電系統生質能發電系統直流微電網壓縮空氣儲能系統多機電力系統電力系統穩定度
外文關鍵詞: Hybrid renewable energy, solar power generation systems, biomass energy generation systems, DC microgrid, compressed air energy storage systems, multi-machine power systems, power systems stability
相關次數: 點閱:59下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文提出以壓縮空氣儲能為基礎之儲能系統,以補償具有間歇性混合式可再生能源之直流微電網,其中包括一個太陽能發電廠、生質能發電廠,該直流微電網透過直流轉交流之換流器連接至具有十二匯流排多機電力系統,並分析所提出之儲能系統對於直流微電網以及多機電力系統改善之有效性。在本論文中使用MATLAB/Simulink建立壓縮空氣儲能系統模型,並使用機率方法決定儲能系統之容量。本文亦利用該軟體建立混合式可再生能源系統模型與十二匯流排多機電力系統模型,並對整體系統之穩態、動態和暫態進行穩定度分析,以比較所研究系統加入儲能系統前後,對於該架構功率平滑以及穩定度改善之效果。

    This thesis proposes an energy storage system based on compressed air energy storage to compensate for a DC microgrid with intermittent hybrid renewable energy, including a photovoltaic farm and a biomass energy farm. The DC microgrid is connected to a multi-machine power systems with a twelve bus through a DC to AC converter, and the effectiveness of the proposed energy storage systems in improving the DC microgrid and multi-machine power systems is analyzed. In this thesis, a compressed air energy storage systems model is established using MATLAB/Simulink, and the probability method is used to determine the capacity of the energy storage systems. This thesis also uses the software to establish a hybrid renewable energy systems model and a twelve bus multi machine power systems model, and conducts stability analysis on the overall systems' steady-state, dynamic, and transient performance, in order to compare the effects of adding an energy storage system to the studied systems on power smoothing and stability improvement.

    摘要 I Abstract II 致謝 VIII 目錄 IX 圖目錄 XIII 表目錄 XVI 符號說明 XVII 第一章 緒論 1 1-1 研究背景與動機 1 1-2 相關文獻回顧 3 1-3 本文之貢獻 7 1-4 研究內容概述 7 第二章 研究系統之架構與數學模型 9 2-1 前言 9 2-2 系統架構 10 2-3 生質能發電系統之數學模型 11 2-3-1 速度控制 11 2-3-2 溫度控制 12 2-3-3 燃料系統控制 13 2-3-4 壓縮機-渦輪機模型 13 2-3-5 永磁式同步發電機 14 2-4 太陽能發電系統之數學模型 16 2-4-1 太陽能光伏電池模型 16 2-4-2 太陽能陣列之數學模型 18 2-4-3 直流對直流升壓轉換器數學模型 19 2-5 直流對三相交流電壓源換流器之數學模型 23 2-6 壓縮空氣儲能系統 25 2-7 多機系統之數學模型 25 2-7-1 同步發電機之雙軸數學模型 26 2-7-2 激磁系統之數學模型 28 2-7-3 蒸氣渦輪機轉矩之數學模型 29 2-7-4 調速機之數學模型 30 2-7-5 負載與傳輸線網路之數學模型 31 第三章 壓縮空氣儲能系統之數學模型與控制 34 3-1 前言 34 3-2 壓縮空氣儲能系統之架構 34 3-3 壓縮空氣儲能系統之數學模型 35 3-3-1 充電模式 35 3-3-2 放電模式 39 3-4 儲能系統容量設計 43 3-4-1 核平滑密度估計應用 46 3-4-2 累積密度函數及壓縮空氣儲能系統額定功率選擇 48 第四章 研究系統之穩態分析 50 4-1 前言 50 4-2 參與因子分析 51 4-3 特徵值求得法 52 4-4 研究系統架構於案例一之系統特徵值結果 55 4-5 研究系統架構於案例二之系統特徵值分析 56 4-6 研究系統架構於案例三之系統特徵值分析 62 第五章 研究系統之動態與暫態分析 68 5-1 前言 68 5-2 動態響應分析 69 5-2-1 研究系統架構於動態案例一之響應分析 69 5-2-2 研究系統架構於動態案例二之響應分析 75 5-3 暫態響應分析 80 5-3-1 研究系統架構於暫態案例一之響應分析 80 5-3-2 研究系統架構於暫態案例二之響應分析 86 第六章 結論與未來研究方向 91 6-1 結論 91 6-2 未來研究方向 93 參考文獻 95 附錄:本論文研究系統架構所使用之參數 103

    [1] J. D. Rozario, S. Shams, S. Rahman, A. Sharif, and E. Basher, “Cost effective solar-biogas hybrid power generation system,” in Proc. 2015 IEEE International Conference on Industrial Technology (ICIT), Seville, Spain, Mar. 17-19, 2015.
    [2] H. Liang, L. Yan, L. Yu, and J. Han, “Design of micro-grid with biogas power generation,” in Proc. International Conference on Renewable Power Generation (RPG 2015), Beijing, China, Oct. 17-18, 2015.
    [3] S. K. Nayak and D. N. Gaonkar, “Modeling and performance analysis of microturbine generation system in grid-connected/islanding operation,” International Journal of Renewable Energy Research, vol. 2, no. 4, pp. 750-757, Aug. 2012.
    [4] J. Hu, P. Joebges, and R. W. D. Doncker, “Maximum power point tracking control of a high power DC-DC converter for PV integration in MVDC distribution grids,” in Proc. 2017 IEEE Applied Power Electronics Conference and Exposition (APEC), Tampa, FL, USA, Mar. 26-30, 2017, pp. 26-30.
    [5] S. R. Guda, “Modeling and power management of a hybrid wind-microturbine power generation system,” M. S. thesis, Department of Electrical Engineering, Montana State University, MS, USA, 2005.
    [6] M. Saeed, S. Fawzy, and M. El-Saadawi, “Modeling and simulation of biogas fueled power system,” International Journal of Green Energy, vol. 16, no. 2, pp. 125-151, Nov. 2018.
    [7] I. Calero, C. A. Canizares, and K. Bhattacharya, “Compressed air energy storage system modeling for power system studies,” IEEE Trans. Power Systems, vol.34, no. 5, pp. 3359-3371, Sep. 2019.
    [8] M. Mahmoud, M. Ramadan, A. G. Olabi, K. Pullen, and S. Naher, “A review of mechanical energy storage systems combined with wind and solar applications,” Energy Conversion and Management, vol. 210, Apr. 2020.
    [9] Z. Tong, Z. Cheng, and S. Tong, “A review on the development of compressed air energy storage in China: Technical and economic challenges to commercialization,” Renewable and Sustainable Energy Reviews, vol. 135, Jan. 2021.
    [10] I. Calero, C. A. Cañizares, and K. Bhattacharya, “Implementation of transient stability model of compressed air energy storage systems,” IEEE Trans. Power Systems, vol. 35, no. 6, pp. 4734-4744, Nov. 2020.
    [11] M. V. Dahraie, H. R. Najafi, R. N. Azizkandi, and M. R. Nezamdoust, “Study on compressed air energy storage coupled with a wind farm,” in Proc. 2012 Second Iranian Conference on Renewable Energy and Distributed Generation (ICREDG), Tehran, Iran, Mar. 6-8, 2012, pp. 147-152.
    [12] V. Vongmanee, “The renewable energy applications for uninterruptible power supply based on compressed air energy storage system,” in Proc. 2009 IEEE Symposium on Industrial Electronics and Applications (ISIEA), Kuala Lumpur, Malaysia, Oct. 4-6, 2009, pp. 827-830.
    [13] M. Martinez, M. G. Molina, P. F. Frack, and P. E. Mercado, “Dynamic modeling, simulation and control of hybrid energy storage system based on compressed air and supercapacitors,” IEEE Latin America Transactions, vol. 11, no. 1, pp. 466-472, Feb. 2013.
    [14] I. Calero, C. A. Canizares, and K. Bhattacharya, “Impact of mechanical system modeling on compressed air energy storage models for frequency regulation,” in Proc. 2019 IEEE Power & Energy Society General Meeting (PESGM), Atlanta, GA, USA, Aug. 4-8, 2019, pp. 1-5.
    [15] B. Zhou, D. Xu, C. Li, C.-Y. Chung, Y. Cao, K.-W. Chan, and Q. Wu, “Optimal scheduling of biogas–solar–wind renewable portfolio for multicarrier energy supplies,” IEEE Trans. Power Systems, vol. 33, no. 6, pp. 6229-6239, Nov. 2018.
    [16] T. Sarkar, A. Bhattacharjee, H. Samanta, K. Bhattacharya, and H. Saha, “Optimal design and implementation of solar PV-wind-biogas-VRFB storage integrated smart hybrid microgrid for ensuring zero loss of power supply probability,” Energy Conversion and Management, vol. 191, no. 1, pp. 102-118, Jul. 2019.
    [17] S. C. Sahoo, A. K. Barik, and D. C. Das, “Selfish-herd optimization based frequency regulation in combined solar-thermal and biogas generator based hybrid microgrid,” in Proc. 2020 International Conference on Contemporary Computing and Applications (IC3A), Lucknow, India, Feb. 5-7, 2020.
    [18] R. Cozzolino, D. Chiappini, and L. Tribioli, “Off-grid PV/URFC power plant fueled with biogas from food waste: an energetic and economic analysis,” Energy, vol. 219, Mar. 2021.
    [19] D. Xu, B. Zhou, K. W. Chan, C. Li, Q. Wu, B. Chen, and S. Xia, “Distributed multi-energy coordination of multi-microgrids with biogas-solar-wind renewables,” IEEE Trans. Industrial Informatics, vol. 15, no. 6, pp. 3254-3266, Jun. 2019.
    [20] D. Alkano, J. M. A. Scherpen, and Y. Chorfi, “Asynchronous distributed control of biogas supply and multi-energy demand,” IEEE Trans. Automation Science and Engineering, vol. 14, no. 2, pp. 558-572, Apr. 2017.
    [21] T. Wu, S. Bu, X. Wei, G. Wang, and B. Zhou, “Multitasking multi-objective operation optimization of integrated energy system considering biogas-solar-wind renewables,” Energy Conversion and Management, vol. 229, Feb. 2021.
    [22] S. Singh, M. Singh, and S. C. Kaushik, “Feasibility study of an islanded microgrid in rural area consisting of PV, wind, biomass and battery energy storage system,” Energy Conversion and Management, vol. 128, pp. 178-190, Nov. 2016.
    [23] C. Li, H. Yang, M. Shahidehpour, Z. Xu, B. Zhou, Y. Cao, and L. Zeng, “Optimal planning of islanded integrated energy system with solar-biogas energy supply,” IEEE Trans. Sustainable Energy, vol. 11, no. 4, pp. 2437-2448, Oct. 2020.
    [24] P. J. Chauhan, J. K. Chatterjee, H. Bhere, B. V. Perumal, and D. Sarkar, “Synchronized operation of DSP-based generalized impedance controller with variable-speed isolated SEIG for novel voltage and frequency control,” IEEE Trans. Industry Applications, vol. 51, no. 2, pp. 1845-1854, Mar. 2015.
    [25] K. M. A. Islam, M. M. Rahman, T. M. Khan, and M. S. Munna, “Design and performance analysis of a hybrid solar PV and biogas power plant using PLC,” in Proc. 2015 3rd International Conference on Green Energy and Technology (ICGET), Dhaka, Bangladesh, Sep. 11-11, 2015.
    [26] A. Pal and S. Bhattacharjee, “Effectuation of biogas-based hybrid energy system for cost-effective decentralized application in small rural community,” Energy, vol. 203, no. 15, Jul. 2020.
    [27] X. Liu, P. Wang, and P. C. Loh, “A hybrid AC/DC microgrid and its coordination control,” IEEE Trans. Smart Grid, vol. 2, no. 2, pp. 278-286, Mar. 17, 2011.
    [28] F. V. Santos, M. Odavic1, Y. Guan, Z. Azar, A. S. Thomas, G. J. Li, and Z. Q. Zhu, “Design considerations for high-power converters interfacing 10 MW superconducting wind power generators,” IET Power Electronics, vol. 10, no. 12, pp. 1461-1467, Oct. 2017.
    [29] M. Abbasi and J. Lam, “A new three-phase AC/DC high power factor soft-switched step-up converter with high gain rectifier modules for medium voltage grid in wind systems,” in Proc. 2016 IEEE Energy Conversion Congress and Exposition (ECCE), Milwaukee, WI, USA, Sep. 18-22, 2016, pp. 18-22.
    [30] T. Li and L. Parsa, “Design, control, and analysis of a fault-tolerant soft-switching DC-DC converter for high-power high-voltage applications,” IEEE Trans. Power Electronics, vol. 38 no. 2, pp. 1094-1104, Feb. 2018.
    [31] M. J. Rana and M. A. Abido, “Energy management in DC microgrid with energy storage and model predictive controlled AC-DC converter,” IET Generation, Transmission & Distribution, vol. 11, no. 15, pp. 3694-3702, Nov. 2017.
    [32] V. M. Anitha and N. Samanvitha, “Modeling and simulation of PMSG based biogas power plant,” Journal of Energy Research and Environmental Technology, vol. 6, no. 2, pp. 120-125, Jun. 2019.
    [33] P. Asgharian and R. Noroozian, “Modeling and simulation of microturbine generation system for simultaneous grid-connected/islanding operation,” in Proc. 2016 24th Iranian Conference on Electrical Engineering (ICEE), Shiraz, Iran, May 10-12, 2016, pp. 1528-1533.
    [34] A. Chikh and A. Chandra, “An optimal maximum power point tracking algorithm for PV systems with climatic parameters estimation,” IEEE Trans. Sustainable Energy, vol. 6, no. 2, pp. 644-652, Apr. 2015.
    [35] F. Wu, P. Ju, X. P. Zhang, C. Qin, G. J. Peng, H. Huang, and J. Fang, “Modeling, control strategy, and power conditioning for direct-drive wave energy conversion to operate with power grid,” in Proceeding of the IEEE, vol. 101, no. 4, pp. 925-941, Apr. 2013.
    [36] 吳元康,花嶼離島微電網系統之再生能源規劃研究,台電工程月刊,第八三一期,106年11月。
    [37] Implement PV array modules, [Online]. Available: http://www.mathworks.com/help/physmod/sps/powersys/ref/pvarray.html, retrieved date: Jul. 16, 2021.
    [38] S. Chiniforoosh, J. Jatskevich, A. Yazdani, V. Sood, V. Dinavahi, J. A. Martinez, and A. Ramirez, “Definitions and applications of dynamic average models for analysis of power systems,” IEEE Trans. Power Delivery, vol. 25, no. 4, pp. 2655-2669, Oct. 2010.
    [39] W. Janke, “Averaged models of pulse-modulated DC-DC power converters. Part I: Discussion of standard methods,” Archives of Electrical Engineering, vol. 61, no. 4, pp. 609-631, Nov. 2012.
    [40] M. A. Elgendy, B. Zahawi, and D. J. Atkinson, “Assessment of perturb and observe MPPT algorithm implementation techniques for PV pumping applications,” IEEE Trans. Sustainable Energy, vol. 3, no. 1, pp. 21-33, Jan. 2012.
    [41] M. S. Ngan and C. W. Tan, “A study of maximum power point tracking algorithms for stand-alone photovoltaic systems,” in Proc. 2011 IEEE Applied Power Electronics Colloquium (IAPEC), Johor Bahru, Malaysia, Apr. 18-19, 2011, pp. 22-27.
    [42] U. S. Patel, M. D. Sahu, and D. Tirkey, “Maximum power point tracking using perturb & observe algorithm and compare with another algorithm,” International Journal of Digital Application & Contemporary Research (IJDACR), vol. 2, no. 2, pp. 1-8, Sep. 2013.
    [43] A. Adamczyk, M. Altin, O. Goksu, R. Teodorescu, and F. Iov, “Generic 12-bus test system for wind power integration studies,” in Proc. 2013 15th European Conf. Power Electronics and Applications (EPE), Lille, France, Sep. 2-6, 2013, pp. 1-6.
    [44] A. Azizivahed, M. Ramadan, A. G. Olabi, K. Pullen, and S. Naher, “Risk-oriented multi-area economic dispatch solution with high penetration of wind power generation and compressed air energy storage system,” IEEE Trans. Sustainable Energy, vol. 11, no. 3, pp. 1569-1578, Jul. 2020.
    [45] N. S. Hasan, M. Y. Hassan, M. S. Majid, and H. A. Rahman, “Mathematical model of compressed air energy storage in smoothing 2 MW wind turbine,” in Proc. 2012 IEEE International Power Engineering and Optimization Conference (PEOCO), Melaka, Malaysia, Jun. 6-7, 2012, pp. 339-343.
    [46] P. W. Sauer and M. A. Pai, Power System Dynamics and Stability, Upper Saddle River, NJ, USA: Prentice-Hall, 1998.
    [47] P. M. Anderson and A. A. Fouad, Power System Control and Stability, Piscataway, NJ, USA: Wiley-IEEE Press, 2003.
    [48] 武光山,採用以超級電容器為基礎之儲能設備於含有市電併聯型混合式可再生能源系統之性能改善,國立成功大學電機工程學系博士論文,2017年7月。
    [49] 彭賢倫,整合風能、太陽能與波浪能發電系統之直流微電網穩定度分析與研究,國立成功大學電機工程學系碩士論文,2019年7月。
    [50] 曾喜彥,採用全釩氧化還原液流電池於市電併聯型混合再生能源發電系統之性能改善,國立成功大學電機工程學系碩士論文,2019年7月。
    [51] 柯王君奕,採用全釩氧化還原液流電池及超級電容器於市電併聯型混合再生能源系統之穩定度改善分析,國立成功大學電機工程學系碩士論文,2020年7月。
    [52] 李旻舫,雙向互連轉換器於孤島混合交流/直流微電網之頻率控制策略,國立成功大學電機工程學系碩士論文,2022年7月。
    [53] 黃志宏,設計混合式儲能系統之自適應模糊邏輯控制器以達成混合太陽/風能微電網系統的功率平滑,2022年7月。
    [54] 林士嘉,採用電動車負載整合再生能源發電系統之直流微電網連接至多機系統之穩定度分析研究,國立成功大學電機工程學系碩士論文,2023年7月。

    無法下載圖示 校內:2029-06-18公開
    校外:2029-06-18公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE