簡易檢索 / 詳目顯示

研究生: 洪國哲
Hong, Guo-Jhe
論文名稱: 介電陶瓷材料(Mg1-xMnx)2(Ti0.95Sn0.05)O4之微波介電特性改善與應用
Improvement of microwave dielectric material (Mg1-xMnx)2(Ti0.95Sn0.05)O4 and application for wireless communication
指導教授: 李炳鈞
Li, Bin-Jing
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 143
中文關鍵詞: 介電陶瓷濾波器
外文關鍵詞: Dielectric ceramics, Filter
相關次數: 點閱:75下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在本論文首先探討(Mg1-xMnx)2(Ti0.95Sn0.05)O4 ( x = 0.01 ~ 0.09)之微波介電特性,由實驗得知(Mg0.95Mn0.05)2(Ti0.95Sn0.05)O4在燒結溫度為1325℃持溫4小時擁有最佳微波介電特性:εr~ 14.22、Qxf = 347,000 GHz(at 11.72 GHz)、τf~ −57.94ppm/℃。為求τf~ 0的要求,添加三種具有正τf的材料 (La0.5Na0.5)TiO3 (τf~ +480 ppm/℃)、(Ca0.6La0.8/3)TiO3(τf~ +213 ppm/℃)、(Ca0.8Sr0.2)TiO3(τf~ +991 ppm/℃)。由實驗得知0.65(Mg0.95Mn0.05)2(Ti0.95Sn0.05)O4−0.35(Ca0.6La0.8/3)TiO3在燒結溫度為1325℃時持溫4小時擁有最佳微波介電特性:εr~ 24.88,Qxf ~ 133,000 GHz(at 9.04 GHz)而τf~ +0 ppm/℃。
    此外,本論文以FR-4、Al2O3及實驗研製之0.65(Mg0.95Mn0.05)2(Ti0.95Sn0.05)O4−0.35(Ca0.6La0.8/3)TiO3為基板,製作一個步階阻抗共振器,利用Zeland-IE3D電磁模擬軟體並與實作的測量值比較,可獲得縮小濾波器的面積與較好的頻率響應結果。

    The microwave properties of (Mg1-xMnx)2(Ti0.95Sn0.05)O4( x = 0.01 ~ 0.09) dielectric ceramic materials are discussed in this paper. The experimental results show that (Mg0.95Mn0.05)2(Ti0.95Sn0.05)O4 sintered at 1325℃ for 4 hours has the best microwave dielectric properties εr~ 14.22, Qxf ~ 347,000 GHz(at 11.72 GHz) and τf~ −57.94 ppm/℃. In order to adjust negative τf, (La0.5Na0.5)TiO3 (τf~ +480 ppm/℃)、(Ca0.6La0.8/3)TiO3(τf~ +213 ppm/℃)、(Ca0.8Sr0.2)TiO3(τf~ +991 ppm/℃)which has positive τf had been add. The experiment result showed that 0.65(Mg0.95Mn0.05)2(Ti0.95Sn0.05)O4−0.35(Ca0.6La0.8/3)TiO3 sintered at 1325℃ for 4 hours has the best microwave dielectric properties εr~ 24.88, Qxf ~ 133,000 GHz(at 9.04 GHz) andτf~ +0 ppm/℃.
    In addition, a stepped-impedance resonator on FR-4, Al2¬O3 and 0.65(Mg0.95Mn0.05)2(Ti0.95Sn0.05)O4−0.35(Ca0.6La0.8/3)TiO3 are fabricated. The experimental measurements demonstrate the ceramic 0.65(Mg0.95Mn0.05)2(Ti0.95Sn0.05)O4−0.35(Ca0.6La0.8/3)TiO3 can be used for microwave applications because of their superior micro properties of low loss, small device area, high Qxf value and high relative dielectric constant substrate.

    摘要 I Abstract II 誌謝 VIII 目錄 IX 表目錄 XIII 圖目錄 XV 第一章 緒論 1 1-1 前言 1 1-2 研究動機、目的、方法與預期結果 2 第二章 介電陶瓷材料 4 2-1. 介電陶瓷材料之微波特性 4 2-1-1. 介電性質 4 2-1-2. 品質因數 8 2-1-3. 共振頻率溫度飄移係數 10 2-2. 介電共振器原理 11 2-3. 陶瓷材料燒結原理 15 2-3-1. 陶瓷材料燒結之擴散機制 15 2-3-2. 陶瓷材料燒結之過程 16 2-3-3. 陶瓷材料燒結之種類 17 2-4. 尖晶石之結構 19 2-5. 鈣鈦礦之結構 20 第三章 微帶線及濾波器原理 22 3-1 濾波器原理 22 3-1-1 濾波器簡介 22 3-1-2 濾波器之種類及其頻率響應 22 3-2 微帶線原理 25 3-2-1 微帶傳輸線的簡介 25 3-2-2 微帶線的傳輸模態 26 3-2-3 微帶線各項參數計算 27 3-2-4 微帶線的不連續效應 29 3-2-5 微帶線的損失 36 3-3 微帶線諧振器種類 37 3-3-1 λ/4短路微帶線共振器 38 3-3-2 λ/2開路微帶線共振器 39 3-4 共振器間的耦合形式 40 3-4-1 電場耦合: 41 3-4-2 磁場耦合: 44 3-4-3 混合耦合: 47 3-5 四分之一波長的阻抗轉換器與開路殘段(open stub) 49 第四章 實驗程序與量測方法 51 4-1. 製作原料 51 4-2. 介電陶瓷材料之製備 52 4-2-1. 粉末之製備 54 4-2-2. 陶瓷體之製備 55 4-2-3. 主體與摻雜材料之混合 56 4-3. 介電陶瓷材料之量測與分析 58 4-3-1. XRD晶相鑑定 58 4-3-2. SEM表面微結構分析、EDS化學成分分析 59 4-3-3. 密度之量測與計算 60 4-3-4. 介電特性之量測 61 4-3-5. 共振頻率溫度係數之量測 70 4-4. 濾波器之製作與量測 71 4-4-1. 濾波器製作 71 4-4-2. 濾波器量測 72 第五章 實驗結果與討論 74 5-1. (Mg1-xMnx)2(Ti0.95Sn0.05)O4之特性分析與討論 74 5-1-1. (Mg1-xMnx)2(Ti0.95Sn0.05)O4之XRD相鑑定分析 75 5-1-2. (Mg1-xMnx)2(Ti0.95Sn0.05)O4之密度分析 81 5-1-3. (Mg1-xMnx)2(Ti0.95Sn0.05)O4之SEM微結構分析 84 5-1-4. (Mg1-xMnx)2(Ti0.95Sn0.05)O4之微波介電特性分析 87 5-1-5. (Mg1-xMnx)2(Ti0.95Sn0.05)O4之共振頻率溫度飄移係數分析 89 5-2. (1-y)(Mg0.95Mn0.05)2(Ti0.95Sn0.05)O4−y(La0.5Na0.5)TiO3之特性分析與探討 91 5-2-1. (1−y)(Mg0.95Mn0.05)2(Ti0.95Sn0.05)O4−y(La0.5Na0.5)TiO3之XRD相鑑定分析 92 5-2-2. (1−y)(Mg0.95Mn0.05)2(Ti0.95Sn0.05)O4−y(La0.5Na0.5)TiO3之密度分析 94 5-2-3. (1−y)(Mg0.95Mn0.05)2(Ti0.95Sn0.05)O4−y(La0.5Na0.5)TiO3之SEM微結構分析 95 5-2-4. (1−y)(Mg0.95Mn0.05)2(Ti0.95Sn0.05)O4−y(La0.5Na0.5)TiO3微波介電特性分析 99 5-2-5. (1−y)(Mg0.95Mn0.05)2(Ti0.95Sn0.05)O4−y(La0.5Na0.5)TiO3之共振頻率溫度漂移係數分析 102 5-3. (1-y)(Mg0.95Mn0.05)2(Ti0.95Sn0.05)O4−y(Ca0.6La0.8/3)TiO3之特性分析與探討 104 5-3-1. (1−y)(Mg0.95Mn0.05)2(Ti0.95Sn0.05)O4−y(Ca0.6La0.8/3)TiO3之XRD相鑑定分析 105 5-3-2. (1−y)(Mg0.95Mn0.05)2(Ti0.95Sn0.05)O4−y(Ca0.6La0.8/3)TiO3密度分析 108 5-3-3. (1−y)(Mg0.95Mn0.05)2(Ti0.95Sn0.05)O4−y(Ca0.6La0.8/3)TiO3之SEM微結構分析 109 5-3-4. (1−y)(Mg0.95Mn0.05)2(Ti0.95Sn0.05)O4−y(Ca0.6La0.8/3)TiO3之微波介電特性分析 112 5-3-5. (1−y)(Mg0.95Mn0.05)2(Ti0.95Sn0.05)O4−y(Ca0.6La0.8/3)TiO3之共振頻率溫度漂移係數分析 115 5-4. (1-y)(Mg0.95Mn0.05)2(Ti0.95Sn0.05)O4−y(Ca0.8Sr0.2)TiO3之特性分析與探討 116 5-4-1. (1−y)(Mg0.95Mn0.05)2(Ti0.95Sn0.05)O4−y(Ca0.8Sr0.2)TiO3之XRD相鑑定分析 117 5-4-2. (1−y)(Mg0.95Mn0.05)2(Ti0.95Sn0.05)O4−y(Ca0.8Sr0.2)TiO3密度分析 120 5-4-3. (1−y)(Mg0.95Mn0.05)2(Ti0.95Sn0.05)O4−y(Ca0.8Sr0.2)TiO3之SEM微結構分析 121 5-4-4. (1−y)(Mg0.95Mn0.05)2(Ti0.95Sn0.05)O4−y(Ca0.8Sr0.2)TiO3之微波介電特性分析 124 5-4-5. (1−y)(Mg0.95Mn0.05)2(Ti0.95Sn0.05)O4−y(Ca0.8Sr0.2)TiO3之共振頻率溫度漂移係數分析 127 5-5. 濾波器之模擬與實作 128 5-5-1. FR-4基板之模擬與實作結果 130 5-5-2. Al2O3基板之模擬與實作結果 132 5-5-3. 0.65(Mg0.95Mn0.05)2(Ti0.95Sn0.05)O4−0.35(Ca0.6La0.8/3)TiO3基板之模擬與實作結果 134 第六章 結論 138 參考文獻 141

    [1] C. L. Huang, J. Y. Chen, Y. H. Wang, and B. J. Li, "Microwave dielectric properties of (1-x)(Mg0.95Co0.05)TiO3-x(Na0.5La0.5)TiO3 ceramic system," Current Applied Physics, vol. 9, pp. 1355-1359, 2009.
    [2] C.-L. Huang and S.-S. Liu, "High-Q microwave dielectric in the (1-x)MgTiO3–xCa0.6La0.8/3TiO3 ceramic system with a near-zero temperature coefficient of the resonant frequency," Materials Letters, vol. 62, pp. 3205-3208, 6/30/ 2008.
    [3] J.-Y. Chen, C.-Y. Jiang, and C.-L. Huang, "Low-loss microwave dielectrics in the Mg2(Ti0.95Sn0.05)O4-(Ca0.8Sr0.2)TiO3 ceramic system," Journal of Alloys and Compounds, vol. 502, pp. 324-328, 2010.
    [4] B. W. Hakki and P. D. Coleman, "A Dielectric Resonator Method of Measuring Inductive Capacities in the Millimeter Range," IEEE Transactions on Microwave Theory and Techniques, vol. 8, pp. 402-410, 1960.
    [5] W. E. Courtney, "Analysis and Evaluation of a Method of Measuring the Complex Permittivity and Permeability Microwave Insulators," IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, vol. 18, pp. 476-485, 1970.
    [6] A. K. Kan, H. T. Ogawa, A. Yokoi, and Y. Nakamura, "Crystal structure of corundum type Mg4(Nb2-xTax)O9 microwave dielectric ceramics with low dielectric loss," pp. 2485–2488, 2003.
    [7] 翁敏航, 射頻被動元件. 臺北縣中和市: 台灣東華書局股份有限公司, 2006.
    [8] C.-L. Huang and J.-Y. Chen, "Low-Loss Microwave Dielectrics Using Mg2(Ti1−xSnx)O4 (x=0.01–0.09) Solid Solution," Journal of the American Ceramic Society, vol. 92, pp. 2237-2241, 2009.
    [9] C.-L. Huang and J.-Y. Chen, "Low-Loss Microwave Dielectric Ceramics Using (Mg1−xMnx)2TiO4 (x=0.02–0.1) Solid Solution," Journal of the American Ceramic Society, vol. 92, pp. 675-678, 2009.
    [10] 魏炯權, 電子材料工程: 全華圖書股份有限公司, 2001.
    [11] 郭展綱, "燒結促進劑對0.9CaWO4-0.1Mg2SiO4介電陶瓷之影響與應用," 碩士論文, 2004.
    [12] W. D. Kingery, H. K. Bowen, D. R. Uhlmann, and 陳皇鈞(譯), 陶瓷材料概論. 台北市: 曉園出版社有限公司, 1988.
    [13] D. M. Pozar, Microwave engineering, 2nd ed. New York: John Wily & Sons, Inc., 1998.
    [14] D. Kajfez, A. W. Glisson, and J. James, "Computed Modal Field Distributions for Isolated Dielectric Resonators," IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, vol. 32, pp. 1609-1616, 1984.
    [15] D. Kajfez, "Basic Principle Give Understanding of Dielectric Waveguides and Resonators," Microwave System News, vol. 13, pp. 152-161, 1983.
    [16] D. Kajfez and P. Guillon, Dielectric Resonators. New York: Artech House, 1989.
    [17] F. V. Lenel, "Sintering in Presence of a Liquid Phase," Trans. Am. Inst.Mining. Met. Engrs, pp. 878-905, 1948.
    [18] V. N. Eremenko, Y. V. Naidich, and I. Aienko, Liquid phase sintering. New York: Consultants Bureau, 1970.
    [19] J.-H. Sohn, Y. Inaguma, S.-O. Yoon, M. Itoh, T. Nakamura, S.-J. Yoon, et al., "Microwave Dielectric Characteristics of Ilmenite-TypeTitanates with High Q Values," Journal of Applied Physics, vol. 33, pp. 5466-5470, 1994.
    [20] J. P. Schaffer, A. Saxena, T. H. Sanders, Jr., S. D. Antolovich, and S. B. Warner, The Science and Design of Engineering Materials. Boston: WCB McGraw-Hill, 1999.
    [21] 肖定全, 陶瓷材料: 新文京開發出版有限公司, 2003.
    [22] W. F. Smith, 劉品均(譯), and 施佑蓉(譯), 材料科學與工程, 3 ed.: 高立圖書有限公司, 2005.
    [23] J. W. Cahn and R. B. Heady, "Analysis of capillary forces in liquid-phase s-intering of jagged particles," Journal of the American Ceramic Society, vol. 53, pp. 406-409, 1970.
    [24] W. J. Huppmann and G. Petzow, The Elementary Mechanisms of Liquid Sintering vol. Sintering Processes: Plenum Press, 1979.
    [25] R. M. German, Liquid phase sintering: Plenum Press, 1985.
    [26] J. H. Jean and C. H. Lin, "Coarsening of tungsten particles in W-Ni-Fe allo-ys," Journal of Materials Science, vol. 24, pp. 500-504, 1989.
    [27] A. Kalendova´, D. Vesely´, and J. Brodinova, "Anticorrosive spinel-type pigments of the mixed metal oxides compared to metal polyphosphates," Anti-Corrosion Methods and Materials, vol. 51, pp. 6-17, 2004.
    [28] C.-L. Huang, J.-Y. Chen, and B.-J. Li, "Effect of CaTiO3 Addition on Microwave Dielectric Properties of Mg2(Ti0.95Sn0.05)O4 Ceramics," Journal of Alloys and Compounds, vol. 509, pp. 4247-4251, 2011.
    [29] 吳朗, 電工材料: 滄海書局, 1998.
    [30] 余樹楨, 晶體之結構與性質: 渤海堂文化事業有限公司, 2009.
    [31] R. L. Geiger, P. E. Allen, and N. R. Strader, VLSI design techniques for analog and digital circuits: McGraw-Hill, 1990.
    [32] J. S. Hong and M. J. Lancaster, Microstrip filters for RF/microwave applications: John Wiley & Sons, 2001.
    [33] G. Kompa, Practical microstrip design and applications: Artech House, 2005.
    [34] 張盛富 and 戴明鳳, 無線通信之射頻被動電路設計: 全華圖書股份有限公司, 1998.
    [35] K. C. Gupta, R. Garg, I. Bahl, and P. Bhartia, Microstrip lines and slotlines, Second Edition: Artech House, 1996.
    [36] R. A. Pucel, D. J. Masse, and C. P. Hartwig, "Losses in microstrip," IEEE Trans. Microwave Theory Tech., vol. MTT-16, pp. 342–350, 1968.
    [37] G. L. Matthaei, L. Young, and E. M. T. Jones, "Losses in microstrip," IEEE Trans. Microwave Theory Tech., vol. MTT-16, pp. 342–350, 1968.
    [38] E. J. Denlinger, "Losses of microstrip lines," IEEE Trans. Microwave Theory Tech., vol. 28 [6], pp. 513–522, 1980.
    [39] S. H. Cha, IEEE. Trans. MTT, vol. MTT-33 p. 519, 1985.
    [40] P. Wheless and D. Kajfez, "The use of higher resonant modes in measuring the dielectric constant of dielectric resonators," IEEE Transactions on Microwave Theory and Techniques, vol. 85, pp. 473-476, 1985.
    [41] Y. Kobayashi and M. Katoh, "Microwave Measurement of Dielectric Properties of Low-Loss Materials by the Dielectric Rod Resonator Method," IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, vol. 33, pp. 586-592, 1985.
    [42] H. Takahashi, Y. Baba, K. Ezaki, Y. Okamoto, K. Shibata, K. Kuroki, et al., "Dielectric Characteristics of (A1+ 1/2 •A3+ 1/2 )TiO3 Ceramics at Microwave Frequencies," Japanese Journal of Applied Physics, vol. 30, p. 2339, 1991.
    [43] P. L. Wise, I. M. Reaney, W. E. Lee, T. J. Price, D. M. Iddles, and D. S. Cannell, "Structure–microwave property relations in (SrxCa(1−x))n+1TinO3n+1," Journal of the European Ceramic Society, vol. 21, pp. 1723-1726, // 2001.
    [44] C.-L. Huang and J.-Y. Chen, "Low-Loss Microwave Dielectrics Using Mg2(Ti1-x Snx)O4 (x=0.01-0.09) Solid Solution," Journal of the American Ceramic Society, vol. 92, pp. 2237-2241, 2009.

    下載圖示 校內:2018-07-15公開
    校外:2018-07-15公開
    QR CODE