簡易檢索 / 詳目顯示

研究生: 林怡均
Lin, Yi-Chun
論文名稱: 具耦合電感及切換式電容七階換流器
Seven-Level Inverter Using Coupled Inductor and Switched Capacitor
指導教授: 陳建富
Chen, Jiann-Fuh
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 68
中文關鍵詞: 多階換流器切換式電容電路耦合電感
外文關鍵詞: multilevel inverter, switched-capacitor circuit, coupled inductor
相關次數: 點閱:105下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文提出一新型單相七階換流器,此架構包含一直流電源、切換式電容電路以及耦合電感。相較於傳統七階換流器架構,本文提出之架構採用較少功率開關及二極體元件。此新型單相七階換流器可減少一顆電容,以增加電路穩定性,並提高整體壽命。藉由切換式電容電路與耦合電感,可使電容達到自我電壓平衡,且不需使用複雜的控制方法。此外,本文提出之架構可降低輸出電壓總諧波失真率。
    最後,由模擬結果與實驗結果顯示,本文所提出之換流器於輸入電壓350-Vdc,輸出電壓380-Vac,輸出滿載3 kW下,其輸出電壓總諧波失真率為0.52 %,可驗證本文提出之多階換流器架構的可行性。

    This thesis proposes a novel single-phase seven-level inverter. The topology of the proposed structure is composed of a DC source, a switched-capacitor circuit, and a coupled inductor. Compared to traditional seven-level inverter structure, the numbers of switches and diodes are reduced. The novel single-phase seven-level inverter reduces the number of capacitor by one, increasing the stability and life cycle of the circuit. The voltages of capacitors are self-balanced by switched-capacitor circuit and coupled inductor without complex control method. Therefore, the output voltage total harmonic distortion of the proposed structure can be reduced.
    Finally, the simulation and experimental results show the 350-Vdc input voltage, 380-Vac output voltage, and 0.52 % output total harmonic distortion under 3 kW output power condition to verify the feasibility of the proposed multilevel inverter.

    中文摘要 I 英文摘要 II 誌謝 III 目錄 IV 表目錄 VII 圖目錄 VIII 第一章 緒論 1 1.1 研究背景與動機 1 1.2 研究內容與目的 2 1.3 論文大綱 3 第二章 多階換流器架構與控制方法 4 2.1 前言 4 2.2 多階換流器之架構 6 2.2.1 二極體箝位式多階換流器 6 2.2.2 飛輪電容式多階換流器 8 2.2.3 串接式多階換流器 11 2.2.4 簡易型多階換流器 13 2.2.5 具電壓平衡電路之二極體箝位式五階換流器 14 2.2.6 切換式電容之七階換流器 17 2.2.7 具耦合電感之五階換流器 18 2.2.8 各式多階換流器之比較 20 2.3 正弦脈波寬度調變之切換技術 21 第三章 新型單相七階換流器 23 3.1 前言 23 3.2 電路架構 24 3.3 耦合電感之設計 25 3.4 操作模式分析 28 3.5 開關控制技術 41 第四章 模擬及實驗結果 48 4.1 前言 48 4.2耦合電感設計 51 4.3模擬結果 52 4.4 實驗結果 55 第五章 結論與未來研究方向 62 5.1 結論 62 5.2 未來研究方向 63 參考文獻 64   表目錄 表2.1二極體箝位式三階換流器之功率開關動作模式 7 表2.2飛輪電容式三階換流器之功率開關動作模式 9 表2.3全橋式三階換流器之功率開關動作模式 11 表2.4 簡易型五階換流器之功率開關動作模式 13 表2.5 切換式電容七階換流器之功率開關動作模式 18 表2.6 具耦合電感之五階換流器功率開關動作模式 19 表2.7 新型七階換流器與傳統七階換流器之元件數比較表 20 表3.1 新型七階換流器開關導通狀態表 28 表4.1 TMDSDOCK28035之基本規格表 49 表4.2 新型七階換流器之電路規格表 50 表4.3 新型七階換流器之元件規格與參數表 50 圖目錄 圖2.1二極體箝位式三階換流器 6 圖2.2二極體箝位式七階換流器 8 圖2.3飛輪電容式三階換流器 9 圖2.4飛輪電容式七階換流器 10 圖2.5全橋式三階換流器 11 圖2.6串接式七階換流器 12 圖2.7 簡易型五階換流器 13 圖2.8 簡易型七階換流器 14 圖2.9 具電壓平衡電路之二極體箝位式五階換流器 15 圖2.10 電壓平衡電路(a)模式A (b)模式B 16 圖2.11 切換式電容之七階換流器 17 圖2.12 具耦合電感之五階換流器 19 圖2.13 正弦脈波寬度調變法之方塊圖 21 圖2.14 正弦脈波寬度調變法之示意圖 22 圖3.1 新型七階換流器 24 圖3.2 後級耦合電感示意圖 25 圖3.3 Mode 1電流路徑圖 29 圖3.4 Mode 2電流路徑圖 30 圖3.5 Mode 3電流路徑圖 31 圖3.6 Mode 4電流路徑圖 32 圖3.7 Mode 5電流路徑圖 33 圖3.8 Mode 6電流路徑圖 34 圖3.9 Mode 7電流路徑圖 35 圖3.10 Mode 8電流路徑圖 36 圖3.11 Mode 9電流路徑圖 37 圖3.12 Mode 10電流路徑圖 38 圖3.13 Mode 11電流路徑圖 39 圖3.14 Mode 12電流路徑圖 40 圖3.15 相位配置脈波寬度調變控制圖 42 圖4.1 TMDSDOCK28035之系統方塊圖 49 圖4.2 新型七階換流器之模擬電路 52 圖4.3 開關訊號vGE,A、vGE,B、vGE,C、vGE,D、vGE,E模擬波形 53 圖4.4 開關訊號vGE,F、vGE,G、vGE,H、vGE,I、vGE,J模擬波形 53 圖4.5 電壓v12、vo模擬波形 54 圖4.6 功率開關之控制訊號vGE,A、vGE,B、vGE,C、vGE,D波形 55 圖4.7 功率開關之控制訊號vGE,A、vGE,E、vGE,F、vGE,G波形 56 圖4.8 功率開關之控制訊號vGE,A、vGE,H、vGE,I、vGE,J波形 56 圖4.9 輸出功率540W下v12、vC1、vC2、vo之實測波形 57 圖4.10 輸出功率846W下v12、vC1、vC2、vo之實測波形 57 圖4.11 輸出功率1259W下v12、vC1、vC2、vo之實測波形 58 圖4.12 輸出功率1671W下v12、vC1、vC2、vo之實測波形 58 圖4.13 輸出功率2930W下v12、vC1、vC2、vo之實測波形 59 圖4.14 新型七階換流器之效率曲線 60 圖4.15 輸出電壓之傅立葉分析 61 圖4.16 總諧波失真率(Po=540W, THD=0.58 %) 61 圖4.17 總諧波失真率(Po=2929.6W, THD=0.52 %) 61

    [1] P. Samuel, R. Gupta, and D. Chandra, “Grid interface of wind power with large split-winding alternator using cascaded multilevel inverter,” IEEE Trans. Energy Convers., vol. 26, no. 1, pp. 299-309, Mar. 2011.
    [2] N. A. Rahim and J. Selvaraj, “Multistring five-level inverter with novel PWM control scheme for PV application,” IEEE Trans. Ind. Electron., vol. 57, no. 6, pp. 2111-2123, Jun. 2010.
    [3] V. T. Somasekhar, K. Gopakumar, M. R. Baiju, Krishna K. Mohapatra, and L. Umanand, “A multilevel inverter system for an induction motor with open-end windings,” IEEE IECON Annual Conference, vol. 2, pp.973-978, Nov. 2002.
    [4] J. Pereda and J. Dixon, “23-level inverter for electric vehicles using a single battery pack and series active filters, ” IEEE Trans. Vehicular Tech., vol. 61, no. 3, pp. 1043-1051, Mar. 2012.
    [5] M. M. Renge and H. M. Suryawanshi, “Five-level diode clamped inverter to eliminate common mode voltage and reduce dv/dt in medium voltage rating induction motor drives,” IEEE Trans. Power Electron., vol. 23, no.4, pp. 1598-1607, Jul. 2008.
    [6] G. P. Adam, S. J. Finney, A. M. Massoud, and B. W. Williams, “capacitor balance issues of the diode-clamped multilevel inverter operated in a quasi two-state mode,” IEEE Trans. Ind. Electron., vol.55, no. 8, pp. 3088-3099, Aug. 2008.
    [7] M. Marchesoni and P. Tensa, “Diode-clamped multilevel converters: a practicable way to balance DC-link voltages,” IEEE Trans. Ind. Electron., vol. 49, no. 4, pp. 752-765, Aug. 2002.
    [8] O. Bouhali, B. Francois, E. M. Berkouk, and C. Saudemont, “DC link capacitor voltage balancing in a three-phase diode clamped inverter controlled by a direct space vector of line-to-line voltages,” IEEE Trans. Power Electron., vol. 22, no.5, pp. 1636-1648, Sep. 2007.
    [9] D. W. Kang, B. K. Lee, J. H. Jeon, T. J. Kim, and D. S. Hyun, “A symmetric carrier technique of CRPWM for voltage balance method of flying-capacitor multilevel inverter,” IEEE Trans. Ind. Electron., vol. 52, no. 3, pp. 879-888, Jun. 2005.
    [10] J. Huang and K. A. Corzine, “Extended operation of flying capacitor multilevel inverters,” IEEE Trans. Power Electron., vol. 21, no.1, pp. 140-147, Jan. 2006.
    [11] A. Shukla, A. Ghosh, and A. Joshi, “Improved multilevel hysteresis current regulation and capacitor voltage balancing schemes for flying capacitor multilevel inverter,” IEEE Trans. Power Electron., vol. 23, no.2, pp. 518-529, Mar. 2008.
    [12] Z. Du, B. Ozpineci, L. M. Tolbert, and J. N. Chiasson, “DC–AC cascaded H-bridge multilevel boost inverter with no inductors for electric/hybrid electric vehicle applications,” IEEE Trans. Ind. Appl., vol.45, no. 3, pp. 963-970, May. 2009.
    [13] R. Gupta, A. Ghosh, and A. Joshi, “Switching characterization of cascaded multilevel-inverter-controlled systems,” IEEE Trans. Ind. Electron., vol. 55, no. 3, pp. 1047-1058, Mar. 2008.
    [14] R. Gupta, A. Ghosh, and A. Joshi, “Multiband hysteresis modulation and switching characterization for sliding-mode-controlled cascaded multilevel inverter,” IEEE Trans. Ind. Electron., vol. 57, no. 7, pp. 2344-2353, Jul. 2010.
    [15] Z. Du, L. M. Tolbert, B. Ozpineci, and J. N. Chiasson, “S fundamental frequency switching strategies of a seven-level hybrid cascaded H-bridge multilevel inverter,” IEEE Trans. Power Electron., vol. 24, no.1, pp. 25-33, Jan. 2009.
    [16] P. Cortés, A. Wilson, S. Kouro, J. Rodriguez, and H. A. Rub, “Model predictive control of multilevel cascaded H-bridge inverters,” IEEE Trans. Ind. Electron., vol. 57, no. 8, pp. 2691-2699, Aug. 2010.
    [17] Z. Zhao, J. S. Lai, and Y. Cho, “Dual-mode double-carrier-based sinusoidal pulse width modulation inverter with adaptive smooth transition control between modes,” IEEE Trans. Ind. Electron., vol. 60, no. 5, pp. 2094-2103, May 2013.
    [18] W. Yao, H. Hu, and Z. Lu, “Comparisons of space-vector modulation and carrier-based modulation of multilevel inverter,” IEEE Trans. Power Electron., vol. 23, no.1, pp. 45-51, Jan. 2008.
    [19] N. A. Rahim, K. Chaniago, and J. Selvaraj, “Single-phase seven-level grid-connected inverter for photovoltaic system,” IEEE Trans. Ind. Electron., vol. 58, no.6, pp. 2435-2443, Jun. 2011.
    [20] N. Mohan, T. M. Undeland, and W. P. Robbins, Power electronics third edition, John Wiley & Sons, Inc, Oct. 2002.
    [21] K. Sano and H. Fujita, “A new control method of a resonant switched-capacitor converter and its application to balancing of the split DC voltages in a multilevel inverter,” IEEE PESC Power Conference, pp. 122-129. Apr. 2007.
    [22] A. Shukla, A. Ghosh, and A. Joshi, “Flying capacitor-based chopper circuit for DC capacitor voltage balancing in diode-clamped multilevel inverter,” IEEE Trans. Ind. Electron., vol. 57, no. 7, Jul. 2010.
    [23] Z. Shu, X. He, Z. Wang, D. Qiu, and Y. Jing, “Voltage balancing approaches for diode-clamped multilevel converters using auxiliary capacitor-based circuits,” IEEE Trans. Power Electron., vol. 28, no. 5, May 2013.
    [24] N. S. Choi, J. G. Cho, and G. H. Cho, “A general circuit topology of multilevel inverter,” IEEE PESC Power Conference, pp. 96-103, Jun. 1991.
    [25] D. W. Kang, B. K. Lee, J. H. Jeon, T. J. Kim, and D. S. Hyun, “A Symmetric Carrier Technique of CRPWM for Voltage Balance Method of Flying-Capacitor Multilevel Inverter,” IEEE Trans. Ind. Electron., vol. 52, no. 3, pp. 879-888, Jun. 2005.
    [26] A. Ruderman and B. Reznikov, “Seven-level single-leg flying capacitor converter voltage balancing dynamics analysis,” IEEE EPE Power Electronics and Applications Conference, pp. 1-10, 2011.
    [27] R. Gupta, A. Ghosh, and A. Joshi, “Switching Characterization of Cascaded Multilevel-Inverter-Controlled Systems,” IEEE Trans. Ind. Electron., vol. 55, no. 3, pp. 1047-1058, Mar. 2008.
    [28] G. Ceglia, V. Guzman, C. Sanchez, F. Ibanez, J. Walter, and M. I. Gimenez, “A new simplified multilevel inverter topology for DC-AC conversion,” IEEE Trans. Power Electron., vol. 21, no. 5, pp. 1311-1319, Sep. 2006.
    [29] K. Hasegawa and H. Akagi, “A new DC-voltage-balancing circuit including a single coupled inductor for a five-level diode-clamped PWM inverter,” IEEE Trans. on Ind. Appl., vol. 47, no. 2, pp. 841-852, Mar. 2011.
    [30] Y. Hinago and H. Koizumi, “A switched-capacitor inverter using series/parallel conversion with inductive load,” IEEE Trans. Ind. Electron., vol. 59, no. 2, pp. 5344-5351, Feb. 2012.
    [31] A. M. Knight, J. Ewanchuk, and J. C. Salmon, “Coupled three-phase inductors for interleaved inverter switching, ” IEEE Trans. Magn., vol. 44, no. 11, pp. 4119-4122, Nov. 2008.
    [32] J. Salmon, A. Knight, and J. Ewanchuk, “Single phase multi-level PWM inverter topologies using coupled inductors,” IEEE PESC Power Conference, pp. 802–808. Jun. 2008.
    [33] J. Salmon, J. Ewanchuk, and A. Knight, “PWM inverters using split-wound coupled inductors,” IEEE Trans. Ind. Appl., vol. 45, no. 6, pp. 2001-2009, Nov. 2009.
    [34] D. Floricau, E. Floricau, and G. Gateau, “A novel single-phase five-level inverter with coupled inductors,” IEEE Trans. Ind. Electron., vol. 58, no. 12, pp. 5344-5351, Jul. 2011.
    [35] N. A. Rahim, K. Chaniago, and J. Selvaraj, “Single-phase seven-level grid-connected inverter for photovoltaic system,” IEEE Trans. Ind. Electron., vol. 58, no.6, pp. 2435-2443, Jun. 2011.
    [36] J. Chavarría, D. Biel, F. Guinjoan, C. Meza, and J. J. Negroni, “Energy-balance control of PV cascaded multilevel grid-connected inverters under level-shifted and phase-shifted PWMs,” IEEE Trans. Ind. Electron., vol. 60, no.1, pp. 98-111, Jan. 2013.
    [37] D. W. Kang, B. K. Lee, J. H. Jeon, T. J. Kim, and D. S. Hyun, “A symmetric carrier technique of CRPWM for voltage balance method of flying-capacitor multilevel inverter,” IEEE Trans. Ind. Electron., vol. 52, no.3, pp. 879-888, Jun. 2005.
    [38] E. Najafi and A. H. M. Yatim, “Design and implementation of a new multilevel inverter topology,” IEEE Trans. Ind. Electron., vol. 59, no. 11, pp. 4148-4154, Nov. 2012.

    無法下載圖示 校內:2023-01-01公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE