| 研究生: |
鄭嘉斌 Cheng, Chia-Ping |
|---|---|
| 論文名稱: |
全車模型智慧型主動式懸吊控制系統之研究 Intelligent Active Suspension Controllers for Full-Car Model |
| 指導教授: |
李祖聖
Li, Tuzz-Hseng S. |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2009 |
| 畢業學年度: | 97 |
| 語文別: | 英文 |
| 論文頁數: | 60 |
| 中文關鍵詞: | 滑動模式控制 、模糊控制 、主動式懸吊系統 、模糊滑動模式控制 、全車模型 |
| 外文關鍵詞: | Active suspension system, Full-car model, Fuzzy logic control, Fuzzy sliding-mode control, Sliding-mode control |
| 相關次數: | 點閱:180 下載:6 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文係針對車輛懸吊系統之全車模型,設計一降階觀測器並以模糊控制(FLC)、滑動模式控制(SMC)、模糊滑動模式控制(FSMC)以及進化演算法(EP)來設計其主動式控制器。依據所設定之性能指標與最佳化控制設計所得之控制器進行比較以獲得驗證所設計之控制器具有較優良之表現。車輛懸吊系統之主要目的即在於讓乘客與駕駛者同時獲得較好的乘坐舒適度與路面掌控度。針對一部全車模型所設計的全階觀測器也在本論文中完成並實現了即時獲得路面狀況的資訊。在使用了模糊滑動模式控制(FSMC)設計於全車主動式懸吊系統後,本文中也以李亞普諾夫穩定度分析導證與確認了數理上的穩定度是收斂的。另外,在本論文中分別利用了凸起路面(Bumped Road)、隨機白雜訊起伏路面(White Noise Random Road)以及偽隨機雜訊起伏路面(Pseudo-Random Road)來進行設計完成的主動式懸吊系統模擬及測試。最後,我們設定了性能指標來驗證在本論文所設計的控制器在乘坐舒適度與路面掌控度具有比其它傳統控制理論有著更好的表現。
The main theme of this thesis is to design the observer for the full-car intelligent controllers of the active suspension system to improve the ride comfort and reduce the suspension deflection. The proposed fuzzy logic control (FLC), sliding mode control (SMC), fuzzy sliding-mode control (FSMC) and EP-based fuzzy control can decrease the suspension deflection and improve the ride comfort of the passengers. The observer of the full-car model of an automobile is first examined with using the measured outputs in this thesis. The stability property of the fuzzy sliding-mode controlled active suspension system is confirmed by the Lyapunov stability analysis. In order to make a comparison, we also introduce the optimal active suspension control (OASC) scheme. Three kinds of road profiles, a bad bumped road, a white noise random road, and a power spectral density (PSD) road profile are exploited to test the performance. All the computer simulations demonstrate that the proposed FSMC can provide the best ride comfort and the least suspension deflection among all the examined controllers under all these road profiles.
[1] A. Alleyne and J. K. Hedrick, “Nonlinear adaptive control of active suspension,” IEEE Trans. Control Systems Technology, vol. 3, no. 1, pp. 94-101, 1995.
[2] M. Appleyard and P. E. Wellstead, “Active suspensions: some background,” IEE Proc. on Control Theory Appl., vol. 142, no. 2, pp. 123-128, 1995.
[3] G. D. Buckner, K. T. Schuetze, and J. H. Beno, “Intelligent feedback linearization for active vehicle suspension control,” ASME J. Dyn. Syst., Measurement, Contr., vol. 123, pp. 727-736, 2001.
[4] A. W. Burton, A. J. Truscott, and P. E. Wellstead, “Analysis, modeling and control of an advanced automotive self-leveling suspension system,” IEE Proc. on Control Theory Appl., vol. 142, no. 2, pp. 129-139, 1995.
[5] Y. J. Cao, “Eigenvalue optimization problem via evolutionary programming,” Electronics Letters, vol. 33, no. 7, pp. 642-645, 1997.
[6] W. Chen, H. Xiao, L. Liu, and J. W. Zu, “Integrated control of automotive electrical power steering and active suspension systems based on random sub-optimal control,” Int. J. Vehicle Design, vol. 42, no. 3, pp. 370-391, 2006.
[7] S. B. Choi, Y. T. Choi, and D. W. Park, “A sliding mode control of a full-car electrorheological suspension system via hardware in-the-loop simulation,” ASME J. Dyn. Syst., Measurement, Contr., vol. 122, pp. 114-121, 2000.
[8] A. E. Eiben, R. Hinterding, and Z. Michalewicz, “Parameter Control in Evolutionary Algorithms,” IEEE Trans. Evolutionary Computation, vol. 3, no. 2, pp. 124-141, 1999.
[9] I. Fialho and G. J. Balas, “Road adaptive active suspension design using linear parameter-varying gain-scheduling,” IEEE Trans. on Control Systems Technology, vol. 10, pp. 43-54, 2002.
[10] L. J. Fogel, A. J. Owens, and M. J. Walsh, Intelligence through simulated evolution: forty years of evolutionary programming, Wiley, 1966.
[11] S. J. Huang and W. C. Lin, “Adaptive fuzzy controller with sliding surface for vehicle suspension control,” IEEE Trans. on Fuzzy Systems, vol. 11, pp. 550-559, 2003.
[12] Y. J. Jang and S. W. Kim, “Gain-scheduled control for an active suspension system with an asymmetric hydraulic actuator,” IEICE Trans. On Fundamentals of Electronics, Communications and Computer, vol. E85-A, no. 4, pp.903-908, 2002.
[13] J. H. Kim and H. Myung, “Evolutionary programming techniques for constrained optimization problems,” IEEE Trans. Evolutionary Computation, vol. 1, no. 2, pp. 129-140, 1997.
[14] Y. P. Kuo, and T. H. S. Li, “GA-based fuzzy PI/PD controllers for automotive active suspension system,” IEEE Trans. Industrial Electronics, vol. 46, no. 6, pp. 1051-1056, 1999.
[15] Y. P. Kuo, Automobile suspension system design via evolutionary algorithms and fuzzy logic, Ph.D. Dissertation, National Cheng Kung Univ., Taiwan, 2000.
[16] C. L. Kuo, Study of fuzzy sliding-mode control for magnetic ball levitation systems, Ph.D. Dissertation, National Cheng Kung Univ., Taiwan, 2006.
[17] C. C. Lee, “Fuzzy logic in control systems: fuzzy logic controller, part I and II,” IEEE Trans. Syst., Man, Cybern., vol. 20, no. 2, pp. 404-435, 1990.
[18] T. H. S. Li and Y. P. Kuo, “Evolutionary algorithms for passive suspension systems,” Int. J. JSME, vol. 43, no. 3, 537-544, 2000.
[19] Y. J. Lin, Y. Q. Lu, and J. Padovan, ”Fuzzy logic control of vehicle suspension system,” Int. J. Vehicle Design, vol. 14, pp. 457-470, 1993.
[20] J. Lu and M. Depoyster, “Multiobjective optimal suspension control to achieve integrated ride and handling performance,” IEEE Trans. Control Systems Technology, vol. 10, no. 6, pp. 807-820, 2002.
[21] R. Rajemani and J. K. Hedrick, “Adaptive observers for active automotive suspensions: Theory and experiment,” IEEE Trans. Control Systems Technology, vol. 3, no. 1, pp. 86-93, 1995.
[22] J. D. Robson, “Road surface description and vehicle response,” Int. J. Vehicle Design, vol. 1, 25-35, 1979.
[23] M. C. Smith and F. C. Wang , “Controller parameterization for disturbance response decoupling: Application to vehicle active suspension control,” IEEE Trans. Control Systems Technology, vol. 10, no. 3, pp. 393-407, 2002.
[24] C. W. Tao, M. L. Chan, and T. T. Lee, “Adaptive fuzzy sliding mode controller for linear systems with mismatched time-varying uncertainties,” IEEE Trans. SMC Part. B, vol. 33, no. 2, pp. 283-294, 2003.
[25] C. S. Ting, T. H. S. Li, and F. C. Kung, “Design of fuzzy controller for active suspension system,” Mechatronics, vol. 5, no. 4, pp. 365-384, 1995.
[26] A. G. Thompson and C. E. M. Pearce, “Performance index for a preview active suspension applied to a quarter-car model,” Vehicle System Dynamics, vol. 35, pp. 55-66, 2001.
[27] S. Türkay and H. Akçay, “Aspects of achievable performance for quarter-car active suspensions,” Journal of Sound and Vibration, vol. 311, no. 1-2, pp. 440-460, 2008.
[28] M. Vala’sek, M. Nova’k, Z. Sika, and O. Vaculi’n, “Extend ground hook-new concept of semi-active control of truck’s suspension,” Vehicle System Dynamics, vol. 27, pp.289-303, 1997.
[29] A. J. Vander Schaft, “ -gain analysis of nonlinear systems and nonlinear state feedback control,” IEEE Trans. Automat. Contr., vol. 37, pp. 770-784, 1992.
[30] P. J. T. Venhovens, “The development and implementation of adaptive semi-active suspension control,” Vehicle System Dynamics, vol. 23, pp.211-235, 1994.
[31] H. O. Wang, K. Tanaka, and M. F. Griffin, “An approach to fuzzy control of nonlinear systems: Stability and design issues,” IEEE Trans. Fuzzy Systems, vol. 4, pp. 14-23, 1996.
[32] S. Weiland and J. C. Willems, “Almost disturbance decoupling with internal stability,” IEEE Trans. Automat. Contr., vol. 34, no.3, pp. 277-286, Mar. 1989.
[33] P. J. Werbos, “New tools for prediction and analysis in the behavioral science,” Ph. D. Dissertation in Applied Mathematics, Harvard University, Cambridge, Massachusetts, 1974.
[34] J. C. Willems, “Almost invariant subspace: An approach to high gain feedback design - Part I: Almost controlled invariant subspaces,” IEEE Trans. Automat. Contr., vol. 26, no. 1, pp. 235-252, 1981.
[35] R. R. Yager and D. P. Filev, Essentials of Fuzzy Modeling and Control. New York: Wiley, 1994.
[36] N. Yagiz, Y. Hacioglu, and Y. Taskin, “Fuzzy sliding-mode control of active suspensions,” IEEE Trans. Industrial Electronics, vol. 55, no. 11, pp. 3883-3890, 2008.
[37] P. P. Yip and J. K. Hedrick, “Adaptive dynamic surface control: A simplified algorithm for adaptive backstepping control of nonlinear systems,” Int. J. of Control, vol. 71, no. 5, pp. 959-979, 1998.
[38] B. Yoo and W. Ham, “Adaptive fuzzy sliding mode control of nonlinear system,” IEEE Trans. Fuzzy Systems, vol. 6, no. 2, pp. 315-321, 1998.
[39] I. Youn and A. Hac, “Preview control of active suspension with integral action,” Int. J. of Automotive Technology, vol. 7, no. 5, pp. 547-554, 2006.
[40] I. Youn, J. Im, and M. Tomizuka, “Level and attitude control of the active suspension system with integral and derivative action,” Vehicle System Dynamics, vol. 44, no. 9, pp. 659-674, 2006.
[41] C. Yue, T. Butsuen, and J. K. Hedrick, “Alternative control for automotive active suspensions,” ASME J. of Dynamic Systems Measurement and Control, pp. 316-334, 1989.
[42] X. Yu, Z. Man, and B. Wu, “Design of fuzzy sliding-mode control systems,” Fuzzy Sets and Systems, vol. 95, pp. 295-236, 1998.
[43] L. A. Zadeh, “Fuzzy sets,” Inf. Contr., vol. 8 , pp. 338-35, 1965.