| 研究生: |
陳信宏 Chen, Hsin-Hung |
|---|---|
| 論文名稱: |
利用氣態丙烯酸為中間劑以固定幾丁聚醣於
電漿活化之L型聚乳酸薄膜表面 Immobilization of chitosan on the plasma-activated poly-L-lactic acid film surface using evaporated acrylic acid as the intermediate |
| 指導教授: |
廖峻德
Liao, Jiunn-Der |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2006 |
| 畢業學年度: | 94 |
| 語文別: | 中文 |
| 論文頁數: | 51 |
| 中文關鍵詞: | L型聚乳酸 、幾丁聚醣 、氣態丙烯酸 、周邊神經再生 |
| 外文關鍵詞: | peripheral nerve regeneration, evaporated acrylic acid, Poly-L-lactic acid, chitosan |
| 相關次數: | 點閱:135 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
L型聚乳酸具生物相容性、生物可降解性且具有適當的機械性質,可用於神經導管之支架。幾丁聚醣則具有細胞親和性,用以促進周邊神經的再生。本研究以電漿活化聚乳酸基材表面,產生的自由基再與通入的氣態丙烯酸單體結合;藉由羧基與胺基間產生醯胺鍵結固定幾丁聚醣於L型聚乳酸表面,期能同時結合可降解之L型聚乳酸基材及具表面功能性之幾丁聚醣兩者的優點。實驗以電子掃描式顯微鏡觀察試片表面型態變化,以減弱式全反射紅外線光譜儀及化學分析電子光譜儀分析表面鍵結結構的變化。然後,以抗菌測試及細胞貼附測試來探究具幾丁聚醣表面之試片的生物功能性。
實驗結果顯示:氣態丙烯酸單體可以接枝於L型聚乳酸薄膜上,且幾丁聚醣藉由醯胺鍵結,固定於已接枝丙烯酸單體之聚乳酸薄膜表面上。纖維母細胞型態於固定幾丁聚醣後之聚乳酸薄膜上,經培養48小時後仍然維持較圓形,推論固定幾丁聚醣後之聚乳酸薄膜將降低纖維母細胞於表面上的貼附能力。而細胞在試片上的貼附能力減低,可以降低貼附細胞增殖的速度。此結果可應用於神經導管的支架製作上,將可降低疤痕組織的發生,促進周邊神經再生的效能。
Poly-L-lactic acid ( PLLA ) has biodegradable , biocompatible properties and suitable mechanical character, so it can be manufactured as scaffolds for nerve conduit. Chitosan with cell affinity is used to enhance the regeneration of peripheral nerves. The study is using radicals produced on the plasma-activated PLLA film combining evaporated acrylic acid(AAc)monomers and then immobilizing chitosan on the PLLA film by amide bonding formed between carboxyl and amine group. We expect that it can combine both advantages between biodegradability of PLLA and biological functionality of chitosan. The surface morphology is observed by scanning electron microscope. The respective chemical structure change following sequential reactions were identified using Fourier transform infrared spectrometer-attenuated total reflection and X-ray photoelectron spectroscopy. Then we discover the biological functionality by antibacterial and cell attachment tests.
The results demonstrated that evaporated AAc monomers could be grafted on PLLA film and chitosan could also be immobilized on AAc-grafted PLLA film by amide bonding. The morphology of most fibroblasts cultured on the chitosan-immobilized PLLA film maintained round after 48 hours culturing. We infer that chitosan-immobilized PLLA film would reduce the attachment of fibroblasts on the surface, and therefore the proliferation rate of fibroblasts would also be repressed. The results can be applied on the manufacturing of scaffolds for nerve conduit that can decrease the appearance of scar tissues and enhance the efficacy of peripheral nerve regeneration.
1. S. Sunderland, Nerve and Nerve Injuries. 2nd ed. Edinburgh: Churchill Livingstone 1978.
2. M. A. Glasby, S. E. Gschmeissner, C. L. H. Huang, B. A. De Souza, Degenerated muscle grafts used for peripheral nerve repair in primates, Journal of Hand Surgery - British 1986;11(3):347-351.
3. J. H. Pereira, D. D. Palande, A. Subramanian, T. S. Narayanakumar, J. Curtis, J. L. Turk. Denatured autologous muscle graft in leprosy, Lancet 1991;16;1239-1240.
4. M. Merle, A. L. Dellon, J. N. Campbell, P. S. Chang, Complications from silicon-polymer intubulation of nerves. Microsurgery 1989;10:130-133.
5. R. C. Young, M. Wiberg, G. Terenghi, Poly-3-hydroxybutyrate (PHB): a resorbable conduit for long-gap repair in peripheral nerves British Journal of Plastic Surgery 2002;55(3):235-240.
6. K. Matsumoto, K Ohnishi, T. Sekine, H. Ueda, Y. Yamamoto, T. Kiyotani, T. Nakamura, K. Endo, Y. Shimizu, Use of a newly developed artificial nerve conduit to assist peripheral nerve regeneration across a long gap in dogs, ASAIO Journal 2000;46(4):415-420.
7. G. R. D. Evans, Challenges to nerve regeneration, Seminars in Surgical Oncology 2000;19(3):312-318.
8. T. Hadlock, C. Sundback, D. Hunter, M. Cheney, J. P. Vacanti, A polymer foam conduit seeded with Schwann cells promotes guided peripheral nerve regeneration. Tissue Engineering 2000;6(2):119-127.
9. G. E. Rutkowski, C. A. Heath, Development of a bioartificial nerve graft. II. Nerve regeneration in vitro, Biotechnology Progress 2002;18(2):373-379.
10. G. Lundborg, F. M. Longo, S. Varon, Nerve regeneration model and trophic factors in vivo, Brain Res 1982;232:157–161.
11. C. Gillen, M. Gleichmann, Spreyer P, Mullerr HW. Differentially expressed genes after peripheral nerve injury. J Neurosci Res 1995;42:159–171.
12. X. Gu, P. K. Thomas, R. H. King, Chemotropism in nerve regeneration studied in tissue culture. J Anatomy 1995;186:153–163.
13. A. Berger, F. Lassner, E. Schaller, The Dellon tube in injuries of peripheral nerves. Handchir Mikrochir Plast Chir 1994;26:44–47.
14. L. R. Williams, N. Danielsen, H. Muller, S. Varon. Exogenous matrix precursors promote functional nerve regeneration across a 15-mm gap within a silicone chamber in the rat. J Comput Neurol 1987;264:284–290.
15. A. D. Ansselin, T. Fink, D. F. Davey. Peripheral nerve regeneration through nerve guides seeded with adult Schwann cells. Neuropathol Appl Neurobiol 1997;23:387–398.
16. H. Gong, Y. Zhong, J. Li, Y. Gong, N. Zhao, X. Zhang, Studies on nerve cell affinity of chitosan-derived materials, Journal of Biomedical Materials Research 2000;52 (2);285-295.
17. Y. Yuan, P. Zhang, Y. Yang, X. Wang, X. Gu, The interaction of Schwann cells with chitosan membranes and fibers in vitro Biomaterials 2004;25: 4273–4278.
18. G. R. D. Evan, K. Brandt, M.S. Widmer, L. Lu, R. K. Meszlenyi, P. K. Gupta,
A. G.. Mikos, J. Hodges, J. Williams, A.Gürlek, A. Nabawi, R. Lohman, C.W. Patrick Jr. In vivo evaluation of poly(L-lactic acid) porous conduits for peripheral nerve regeneration. Biomaterials 1999;20:1109-1115.
19. M. S. Widmer, P.K. Gupta, Lichun Lu, R.K. Meszlenyi, G. R. D. Evan, K. Brandt, T. Savel, A. Gurlek, C. W. P. Jr. Antonios G. Mikos. Manufacture of porous biodegradable polymer conduits by an extrusion process for guided tissue regeneration. Biomaterials 1998;19, 1945-1955.
20. T. Chandy, C. Sharma, Chitosan-as a biomaterial. Biomater Art Cells Art Org 1990;18:1–24.
21. R. Muzzarelli. Biochemical signi.cance of exogenous chitins andch itosans in animals andp atients. Carbohydr Polym 1993;20:7–16.
22. R. Muzzarelli, M. Mattioli-Belmonte, C. Tietz, R. Biagini, G. Ferioli, M.A. Brunelli, M. Fini, R. Giardino, P. Ilari, G. Biagini. Stimulatoryelect on bone formation exertedby a modi.edchitosan. Biomaterials 1994;15:1075–1081.
23. Y. L. Cui, A. D. Qi, W. G. Liu, X. H. Wang, H. Wangc, D. M. Ma, K. D. Yaoa. Biomimetic surface modification of poly(l-lactic acid) withch itosan and its effects on articular chondrocytes in vitro. Biomaterials 2003:24:3859–3868.
24. J. D. Liao, S. P. Lin, Dual properties of the deacetylated sites in chitosan for molecular immobilization and biofunctional effects, Biomacromolecules 2005;6:392-399.
25. S. D. Lee, G. H. Hsiue, C. Y Kao, P. C. T. Chang, Artifical cornea:surface modification of silicone rubber membrane by graft polymerization of pHEMA via glow discharge, Biomaterials 1996;17;587-595.
26. Y. J. Kim, I. K. Kang, M. W. Huh, S. C. Yoon, Surface characterization and in vitro Blood compatibility of poly(ethylene terephthalate)Immobilized with insulin and/or heparin using plasma glow discharge, Biomaterials 2000 ;21:121-130.
27. Z. Dinga, J. Chena, S. Gaoa, J. Changa, J. Zhang, E. T. Kang. Immobilization of chitosan onto poly-l-lactic acid.lm surface by plasma graft polymerization to control the morphology of fibroblast and liver cells. Biomaterials 2004;25: 1059–1067.
28. Y. C. Tyana, J. D. Liaoa, R. Klauserb, I. D. Wua, C. C. Wenga, Assessment and characterization of degradation e.ect for the varied degrees of ultra-violet radiation onto the collagen-bonded polypropylene non-woven fabric surfaces , Biomaterials 2002;23:65-76.
29. Z. P. Zhao, J. Li, D. X. Zhang, C. X. Chen, Nanofiltration membrane prepared from polyacrylonitrile ultrafiltration membrane by low-temperature plasma I. Graft of acrylic acid in gas, Journal of Membrane Science 2004;204:1–8.
30. A . Grill., Cold Plasma in Materials Fabrication, IEEE Press 1994.
31. H. V. Boenig, Plasma Science and Technology, Cornell University Press 1982.
32. B. F. I, Plasmas:laboratory and cosmic, Van Nostrand 1966.
33. A. Grill, Cold plasma in materials fabrication: from fundamentals to applica- tions , IEEE Press 1994.
34. M. Okoniewski and J. S. Ledakowicz, Chemically induced graft copolymerization of acrylic acid onto polyester fabrics. I. Kinetic investigation of grafting, J. Appl. Polym. Sci. 1988;35:1241-1249.
35. M. Strobel, C. S. Lyons and K. L. Mittal, Plasma surface modificaiotn of polymers:relevance to adhension, Utrecht, The Netherlands, chap. 3, 1994.
36. A. S. hoffman, Biomedical applications of plasma gas discharge processes, J. Appl. Polym. Sci. 1988;42:251-267.
37. H. Biederman and Y. Osada, Plasma polymerization processes, by Elsevier science publishers, chap. 4 1992.
38. S. M. Kuo, S. W. Tsa, L. H. Huang and Y. Y. Wang, Plasma-modified nylon meshes as supports for cell cull culturing, Art. Cells, Blood subs., And immob. Biotech. 1997;25:551-562.
39. I. H. Coopes and K. J. Gifkins, Gas plasma treatment of polymer surfaces, J. Macromol. Sci-chem. A17 1982;2:217-226.
40. H. Biederman and L. Martin, Plasma deposition treatment, and etching of polymers, by Academic press, chap. 4 1990.
41. N. Inagaki, Plasma surface modification and plasma polymerization, by Technomic publishing company, chap. 3 1996.
42. M. Suzuki, A. Kishida and Y. Iwata, Graft copolymerization of acrylamide onto polyethylene surface pretreated with a glow discharge, Macromolecules 1986;19: 1804-1808.
43. J. Chen, Y. C. Nho, and J. S. Park, Grafting polymerization of acrylic acid on to preirradiated polypropylene fabric, Radiat. Phys. Chem. 1998;52:201-206.
44. I. F. Osipenko and V. I. Martionovicz., Grafting of the Acrylic on poly(ethylene Terephthalate), J. Appl. Polym. Sci. 1990;39:935-942.
45. H. Kubota and Y. ogiwara, Effect of Metallic ions in photo-induced graft copolymerization onto cellulose, J. Appl. Polym. Sci. 1972;16:337-344.
46. D. Knorr, Functional properties of chitin and chitosan, Journal of Food Science 1982;47:593-595.
47. P. R. Austin, C. J. Brine, J. E. Castle, and J. P. Zikakis, Chitin : new facets of research, Science 1981;212:749-753.
48. D. Knorr, Use of chitinous polymers in food— a challenge for food research and development, Food Technology 1984;85-97.
49. R. A. A. Muzzarelli, Chitin, Pregamon Press, Oxford 1976.
50. 賴淑琪,水產廢棄物蝦、蟹外殼之高度利用,食品工業,1979,11,23-28。
51. Q. Li, E. T. Dunn, E. W. Garndmaison, and M. F. A. Goosen, Applications and properties of chitosan, Journal of Bioactive and Compatible Polymers 1992;7:370-394.
52. N. V. Majeti R. Kumar, A review of chitin and chitosan applications, Reactive & Functional Polymers 2000:46:1-27.
53. V. Dodane, and V. D. Vilivalam, Pharmaceutical applications of chitosan, PSTT 1998;1:246-253.
54. M. V. Deshpande, Enzymatic degradation of chitin & its biological application, J. Sci. & Ind. Res. 1986;45:273-277.
55. S. Hirano, Y. Noishiki, J. Kinugawa, Chitin and chitosan for use as a novel biomedical materials, Polymeric Materials Science and Engineering 53;649-653.
56. 陳榮輝,幾丁質、幾丁聚醣的生產製造、檢測與應用,National Science Council Monthly,2001,29,776-787。
57. 徐世昌,生物性高分子-幾丁質與幾丁聚醣之介紹與應用,化工資訊,2001,36-45。
58. S. Hirano, Y. Noishiki, J. Kinugawa, Chitin and chitosan for use as a novel biomedical materials, Polymeric Materials Science and Engineering 53,649-653.
59. 王建文,糖反應幾丁聚糖/聚乙二醇生醫可降解性高分子之製備與生物評估,國立成功大學,2004,22-24。
60. 邱正宇,中心季刊創刊號,國立成功大學微奈米科技研究中心,2005。
61. 儀器總覽9,環境及安全衛生檢測儀器, 行政院國家科學委員會精密儀器發展 中心出版。
62. F. Garbassi, M. Morra, and E. Occhiello, Polymer surfaces from physics to technology, John Wiley & Sons Ltd 1994.
63. 邱承美、陶金華, 儀器分析原理,科文出版社出版,1994。
64. B. gupta, J. G. Hilborn, I. Bisson, P. Frey, Plasma-induced graft polymerization of acrylic acid onto poly(ethylene terephthalate) films. Journal of Applied Polymer Science 2001;81:2993–3001.
65. L. L. Hench, J. M. Polak, Third-generation biomedical material. Science 2002;295(5557):1014-7.
66. N. Inagaki, Plasma surface modification and plasma polymerization, by Technomic publishing company, chap. 3 1996.
67. Y. L. Cui, A. D. Qi, W. G. Liu, X. H. Wang, H. Wang, D. M. Ma, K. D. Yao. Biomimetic surface modi.cation of poly(l-lactic acid) withch itosanand its effects on articular chondrocytes in vitro. Biomaterials 2003;24:3859–3868.
68. 雍建輝,細菌免疫學,台灣中華書局出版。
69. 經濟部財團法人食品工業發展研究所,生物分析用菌種目錄專刊,財團法人食品工業發展研究所。
70. 林淑萍,固定幾丁聚醣於聚丙烯不織布應用在醫療抗菌敷布之研究,私立中原大學。
71. G. C. M. Steffensa, L. Nothdurfta, G. Busea, H. Thissenb, H. H.ockerb, D. Kleeb, High density binding of proteins and peptides to poly(d,l-lactide) grafted with polyacrylic acid, Biomaterials 2002;23:3523–3531.
72. V. N. Vasilets, G. Hermel, U. König, C.Werner, M. Müller, F. Simon, K. Grundke, Y. Ikada, H. J. Jacobasch, Microwave CO2 plasma-initiated vapour phase graft polymerization of acrylic acid onto polytetrafluoroethylene for immobilization of human thrombomodulin, Biomaterials 1997;18(17):1139-1145
73. 雍建輝,細菌免疫學,台灣中華書局出版。
74. J. L. Leuba and P. Stossel, Chitosan and other polyamines antifungal activity and interaction with biology membranes, Chitin and Nature Technology Plinum Press ,New York 1986:215-222.
75. A. M. Papineau, D. G. Hoover, D. Knorr, D. F. Farkas, Antimicrobial effect of water-soluble chitosans with high hydrostatic pressure, Food Biotechnology 1991;5:45-57.
76. N. R. Sudarshan, D. G. Hoover, D. Knorr, “Antibacterial action of chitosan”, Food Biotechnology 1992;6:257-272.
77. L. A. Hadwiger, D. F. Kendra, B. W. Fristensky, and W. Wagoner, Chitosan both activates genes in plants and inhibits RNA synthesis in fungi, Chitin in Nature and Technology, Plenum Press 1985:210.
78. D. Mooney, L. Hansen, J. Vacanti , R. Langer, S. Farmer , D. Ingber . Switching from differentiation to growth in hepatocytes: control by extracellular matrix. J Cell Physiol 1992;151:497–505.
79. D. Tuncali, B. CigsarBeril, T. Ayse Y. Barutcu, G. Aslan. Insulation of simultaneous arterial and nerve repairs in the rat: the effectiveness of the autologous vein graft, Neuroanatomy 2004;3 :51–53.