簡易檢索 / 詳目顯示

研究生: 張世杰
Chang, Shih-Chieh
論文名稱: 用於小鼠腦中風之預防與復健之自動化運動訓練強制滾輪平台設計
A forced running wheel with automation training to prevent and rehabilitate for ischemic stroke of rats
指導教授: 楊慶隆
Yang, C.-L.
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 84
中文關鍵詞: 老鼠運動訓練腦中風心率
外文關鍵詞: rat, excise training, stork, heart rate
相關次數: 點閱:137下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文提出一創新老鼠用之運動訓練平台,其具備無電擊刺激、強制老鼠運動、全自動化減少人為誤差,同時並監測老鼠運動位置與老鼠運動心率,作為有效運動訓練強度評估。
    在實驗上利用包含mNSS、後肢抓力、TTC染色後腦梗塞體積等方式評估運動是否有助於腦中風之預防與復健,利用記憶測試與動態心率量測系統了解運動優點及其心率變化。
    經由實驗證明,利用本研究所提出之運動平台訓練之老鼠,於運動後體溫均上升超過1℃,促使老鼠腦損傷範圍縮小;從神經功能損傷程度評分、後肢抓力、TTC染色後腦梗塞體積變化來看,不論預防組或是復健組之老鼠期均呈現一致結果,即利用本研究所提出運動訓練平台,有助於腦中風預防與復健;從記憶測試分析來看,經由本運動訓練平台訓練之老鼠於Active/Passive Avoidance System平台測試,其記憶將與未進行運動訓練之老鼠有統計上的差異,表示運動有助於記憶學習;由運動期間老鼠運動位置來看,老鼠有效運動時間達97%以上,最常停留於135o位置,其次為90o位置;從老鼠心率分析來看,運動前老鼠心率約每分鐘400~430下,運動期間心率將上升至約每分鐘470~500下,運動結束後,老鼠心率將隨之下降至約每分鐘400下。
    本研究所提出之運動訓練平台,不僅解決人為上誤差,更因為無電擊刺激提升實驗上客觀性,最後並提供老鼠運動位置與老鼠運動心率作為有效運動訓練強度評估。

    The research presents an innovative exercise training platform for rats. The platform forced a rat to run without electric shock and an automatic training model was constructed to remove human error. The heart rate (HR) and running location of rats were monitored during the training period to access an effective exercise training intensity.
    In experience, we use the analysis such as the modified neurologic severity score (mNSS), lower limb grip, and the infarct size of pathological section of TTC staining to assess exercise benefit in prevention and rehabilitation of stroke. The memory analysis and dynamic heart rate measurement assess the benefit of exercise and the heart beat change.
    In our research, the body temperature of rats through the proposed training platform was raised about 1℃ to produce a protective mechanism for preventing brain injuries. The analysis of the modified neurologic severity score (mNSS), lower limb grip, and the infarct size of pathological section of TTC staining shows the consistent result in the prevention and rehabilitation group. The proposed training platform in our research can contribute to the prevention and rehabilitation of stroke.
    The memory analysis shows that exercise is benefit in memory learning. the memory statistics of the training mice is different from the non-training mice. The most often position which is the effective exercise time up to 97% is at 135∘, and the second is at 90∘. The mice’ heart rate is about 400 to 430 per minute, and then the heart rate rises to about 470 to 500 per minute after exercise. The mice’ heart rate returns to 400 per minute at the end of exercise.
    The research presents an innovative exercise training platform for rats, it enhance the objectivity of the experiment without electric shock and human error. It provides the exercise position and heart rate to assess the intensity of exercise training.

    第一章 緒論.................................................1 1.1 研究動機與目的.........................................1 1.2 文獻探討..............................................2 1.2.1 運動的優點、運動與腦中風預防、預後之關係................2 1.2.2 自主性滾輪與強迫性跑步機的比較........................2 1.2.3 非侵入式生理參數: 心電訊號與末梢血流訊號................3 1.3 論文架構..............................................5 第二章 系統設計..............................................7 2.1 系統架構概觀...........................................7 2.2 紅外線滾輪運動訓練平台設計...............................8 2.2.1 馬達原理與種類介紹..................................8 2.2.2 速度控制.........................................11 2.2.3 顯示模組與速度計設計...............................13 2.2.4 紅外線位置偵測電路.................................15 2.3 動態心率量測系統設計...................................17 2.3.1 前級差動放大電路...................................21 2.3.2 濾波電路.........................................24 2.3.3 後級放大電路......................................30 2.3.4 PPG 感測器.......................................31 2.3.5 穩壓電路.........................................32 2.3.6 類比數位轉換器....................................32 2.4 藍芽模組.............................................34 2.5 軟體設計.............................................36 2.6 驗證................................................39 2.6.1 紅外線滾輪平台速度驗證..............................39 2.6.2 動態心率量測系統信號驗證............................40 2.6.3 動態心率量測系統心率驗證............................41 2.6.4 藍芽模組驗證......................................43 2.7 系統特色.............................................44 第三章 實驗設計.............................................45 3.1 實驗目的.............................................45 3.2 實驗動物.............................................45 3.3 實驗儀器.............................................45 3.3.1 紅外線滾輪運動訓練平台..............................45 3.3.2 動物抓力測試平台...................................47 3.3.3 Active/Passive Avoidance System.................48 3.3.4 Animal Treadmill................................49 3.3.5神經功能損傷程度評分 Neurologic severity scores Modified neurogical severity score, mNSS [37]....49 3.4 實驗方法與流程........................................50 3.4.1 中大腦動脈阻斷手術誘導組(Middle cerebral artery occlusion, MCAo) [38]...........................53 3.4.2 耐力運動訓練[39]..................................53 3.4.3 抓力測試.........................................57 3.4.4 mNSS量測........................................57 3.4.5 被動制約學習與記憶動物模式..........................58 3.4.6 組織灌流、腦組織切片、TTC染色與腦梗塞體積計算[40][41]..58 3.4.7 動態心率量測.....................................59 3.5 統計分析.............................................61 第四章 實驗結果分析與討論.....................................62 4.1 運動訓練期間老鼠體溫變化分析.............................62 4.2 mNSS神經功能損傷程度分析...............................63 4.3 老鼠後肢抓力分析......................................65 4.4 TTC染色後腦梗塞體積變化分析.............................67 4.5 記憶測試分析..........................................71 4.6 運動期間老鼠運動位置分析................................72 4.7 運動期間老鼠心率分析...................................73 第五章 結論與未來展望........................................76 5.1 結論................................................76 5.1.1 紅外線滾輪運動訓練平台.............................76 5.1.2 動態心率量測系統...................................77 5.2 未來展望.............................................77 5.2.1 實驗樣本數量提升...................................77 5.2.2 紅外線滾輪運動平台功能性............................77 5.2.3 動態心率量測系統...................................77 Reference.................................................79 Appendix..................................................83

    [1] LIPTON, P., Ischemic Cell Death in Brain Neurons, 1999. 79(4): p. 1431-1568.
    [2] Ang ET, Wong PT, Moochhala S, Ng YK. Neuroprotec-tion associated with running: is it a result of increased endoge-nous neurotrophic factors? 2003. 118(2): p. 335–345
    [3] Ding Y, Ding YH, Li J, Rafols JA. Exercise induces inte-grin overexpression and improves neurovascular integrity in ischemic stroke, 2005. 36(2): p. 470
    [4] Ding Y, Li J, Luan X, Ding YH, Lai Q, Rafols JA, Phillis JW, Clark J, Diaz FG. Exercise pre-conditioning reduces brain damage in ischemic rats that may be associated with regional angiogenesis and cellular overexpression of neurotrophin, 2004. 124(3): p. 583–591
    [5] Ding Y, Li J, Rafols JA, Clark J, Phillis JW, Diaz FG. Pre-ischemic motor exercise reduces ischemia/reperfusion injury in rats that correlates with regional angiogenesis and cellular expression of neurotrophin, 2003. 34: p. 240–241
    [6] Chen, H.I., H.T. Li, and C.C. Chen, Physical conditioning decreases norepinephrine-induced vasoconstriction in rabbits. Possible roles of norepinephrine-evoked endothelium-derived relaxing factor. Circulation, 1994. 90(2): p. 970-975.
    [7] Higashi, Y., et al., Daily Aerobic Exercise Improves Reactive Hyperemia in Patients With Essential Hypertension. Hypertension, 1999. 33(1): p. 591-597.
    [8] Dugmore, L.D., et al., Changes in cardiorespiratory fitness, psychological wellbeing, quality of life, and vocational status following a 12 month cardiac exercise rehabilitation programme. Heart, 1999. 81(4): p. 359-366.
    [9] Shephard, R.J. and G.J. Balady, Exercise as Cardiovascular Therapy. Circulation, 1999. 99(7): p. 963-972.
    [10] Aguiar, A.S., Jr., et al., Physical exercise improves motor and short-term social memory deficits in reserpinized rats. Brain Res Bull, 2009. 79(6): p. 452-7.
    [11] Ding YH, Luan X, Li J, Rafols JA, Guthikonda M, Diaz FG, Ding Y Exercise-induced overexpression of angiogenic factors and reduction of ischemia/reperfusion injury in stroke, 2004. 204(5): p. 411–420
    [12] Ding YH, Young CN, Luan X, Li J, Rafols JA, Clark JC, Mc-Allister JP, Ding Y Exercise preconditioning ameliorates inXammatory injury in ischemic rats during reperfusion, 2005. 109(3): p. 237–246
    [13] Endres M, Gertz K, Lindauer U, Katchanov J, Schultze J, Sch-rock H, Nickenig G, Kuschinsky W, Dirnagl U, Laufs U Mechanisms of stroke protection by physical activity, 2003. 54(5): p. 582–590
    [14] Li J, Luan X, Clark J, Rafols JA, Ding Y Neuroprotec-tion against transient cerebral ischemia by exercise pre-condi-tioning in rats, 2004. 26(4): p. 404–408
    [15] Chen YW, Chen SH, Chou W, Lo YM, Hung CH, Lin TM Exercise pretraining protects against cerebral ischaemia induced by heat stroke in rats, 2007. 41(9): p. 597–602
    [16] Hu XQ, Zheng HQ, Yan TB, Pan SQ, Fang J, Jiang RS, Ma SF Physical exercise induces expression of CD31 and facilitates neu-ral function recovery in rats with focal cerebral infarction, 2010. 32(4): p. 397– 402.
    [17] Zhang F, Wu Y, Jia J, Hu YS Pre-ischemic treadmill training induces tolerance to brain ischemia: involvement of glutamate and ERK1/2, 2010. 15(8): p. 5246–5257.
    [18] Kinni H, Guo M, Jamie Y. Ding, Konakondla S, David Dornbos III, Tran R, Guthikonda M, Ding Y, Cerebral metabolism after forced or voluntary physical exercise,2011. 13(4): p. 48–55
    [19] Hayes, K., Sprague, S., Guo, M., Davis, W., Friedman, A., Kumar, A., Jimenez, D.F., Ding, Y For ced, not voluntary, exercise effectively induces neuro protection in stroke, 2008. 115(3): p.289 – 296
    [20] J. G. Webster, Design of Pulse Oximeters Journal of Medical Engineering and Technology, 1997. 23(1): p.82
    [21]Available: http://en.wikipedia.org/wiki/Electrocardiography
    [22] Patterson, J.A.C. and G.-Z. Yang, Ratiometric Artifact Reduction in Low Power Reflective Photoplethysmography. Ieee Transactions on Biomedical Circuits and Systems, 2011. 5(4): p. 330-338.
    [23]林育德,「脈波信號與PPG 信號特徵之相關性研究」,中醫藥年報,第一年28 期,361-388 頁,2010。
    [24] Allen, J., Photoplethysmography and its application in clinical physiological measurement. Physiol Meas, 2007. 28(3): p. R1-R39.
    [25] Nakajima, K., T. Tamura, and H. Miike, Monitoring of heart and respiratory rates by photoplethysmography using a digital filtering technique. Medical Engineering & Physics, 1996. 18(5): p. 365-372.
    [26]Available: http://zh.wikipedia.org/zh-tw/%E9%9B%BB%E5%8B%95%E6%A9%9F%E5%AE%9A%E5%89%87#.E5.B7.A6.E6.89.8B.E7.B3.BB.E7.B5.B1
    [27]游振桁,“圖解馬達入門”,世茂出版公司,2008 年。
    [28] Available: http://www.stanford.edu/class/ee122/Parts_Info/datasheets/ad620.pdf
    [29] Available: http://www.eettaiwan.com/STATIC/PDF/200807/20080701_OE_TI_TA_01.pdf?SOURCES=DOWNLOAD
    [30]魏嘉玲,「生醫類比 IC 設計」,成功大學上課講義,2010。
    [31] Available: http://www.ti.com.cn/cn/lit/ds/symlink/uaf42.pdf
    [32] Available: http://streamlineautomation.biz/site/index.php?option=com_content&view=article&id=15:intelligent-data-extraction-algorithm-idea&catid=3&Itemid=10
    [33] Available: http://zuff.info/doc/TCRT1000.pdf
    [34] J. S. Lee, Y. W. Su, and C. C. Shen, A comparative study of wireless protocols: Bluetooth, UWB, ZigBee, and Wi-Fi, presented at the 33rd Annual Conference of the IEEE Industrial Electronics Society, 2007.
    [35] Available: http://www.hotlife.com.tw/HL-MD08P-C2.htm
    [36] Chang, M.-W., M.-S. Young, and M.-T. Lin, An inclined plane system with microcontroller to determine limb motor function of laboratory animals. Journal of Neuroscience Methods, 2008. 168(1): 186-194.
    [37] Chen, S.F., et al., Post-injury baicalein improves histological and functional outcomes and reduces inflammatory cytokines after experimental traumatic brain injury. British Journal of Pharmacology, 2008. 155(8): p. 1279-1296.
    [38] Longa, E.Z., et al., Reversible middle cerebral artery occlusion without craniectomy in rats. Stroke, 1989. 20(1): p. 84-91.
    [39] Chen, Y.W., et al., Exercise pretraining protects against cerebral ischaemia induced by heat stroke in rats. Br J Sports Med, 2007. 41(9): p. 597-602.
    [40] Wang R.Y., et al., Protective effects of treadmill training on infarction in rats, Brain Res 2001, 922(1):p. 140-143
    [41] Chen, F., et al., Rodent stroke induced by photochemical occlusion of proximal middle cerebral artery: evolution monitored with MR imaging and histopathology. Eur J Radiol, 2007. 63(1): p. 68-75

    下載圖示 校內:2016-08-14公開
    校外:2016-08-14公開
    QR CODE