研究生: |
朱禹涵 Chu, Yu-Han |
---|---|
論文名稱: |
在線蟲中建立一資料庫提供與PRG-1相關聯的tRF及受其調控的RNA標靶資訊 Construction of a database for tRF associated with PRG-1 and regulated RNA target information in C.elegans |
指導教授: |
吳謂勝
Wu, Wei-Sheng |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
論文出版年: | 2019 |
畢業學年度: | 107 |
語文別: | 中文 |
論文頁數: | 3 |
中文關鍵詞: | 線蟲 、tRF 、基因沉默 、標靶位置預測 |
外文關鍵詞: | C. elegans, tRF, targeting-site prediction, silent mutations |
相關次數: | 點閱:54 下載:1 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
tRNA屬於small ncRNA(小型非編碼核糖核酸, small non-coding RNA)的一種,其 tRNA的分子降解產物tRFs (tRNA-derived small RNA fragments)為tRNA之非隨機產生的碎片,在tRFs被新一代定序技術(NGS)發現後,許多生物學者開始對其進行研究。但tRF的真正功能特性都並未確定,且尚未擁有命名法,生物學家猜測tRF會引發核醣核酸干擾基因表達現象(RNAi現象, RNA interference),以此途徑來沉默基因。然而tRF與內源基因的調控機制尚未明朗,以往的生物實驗要找出這類型的標靶序列,必須經過許多生物實驗的試誤,試誤法耗費的時間、人力與金錢成本十分龐大。若可以先使用生物學上的規則來做預測,找出較有可能的配對後再進行實驗,必會為大幅降低實驗成本並且更容易切中目標。
本研究根據本實驗室過往在線蟲piRNA與mRNA標靶研究上的基礎,並參考目前學界對於tRF的相關研究結果,嘗試建立一假說。假設tRF會與某特定蛋白質結合並對其他RNA產生調控作用。利用合作者提供的線蟲中與PRG-1蛋白結合的CLIP資料及線蟲的CLASH資料,針對此假說加上實驗資料,設計出一套完整的tRF預測流程,找出會與PRG-1結合之tRF,並開發tRF標靶預測工具,預測所有RNA基因序列的tRF標靶位置區域,並將預測結果整理建立tRF-RNA交互作用資料庫,提供兩種搜尋模式讓使用者根據不同需求可選擇不同搜尋方法,搜尋結果包括tRF-RNA標靶對的詳細資訊,並以視覺化的方式呈現標靶位置預測圖給使用者。最後根據這些已知的資訊更進一步的探討會與PRG-1結合之tRF的和piRNA之間是否有類似的性質,以及挑選出數個有極高可信度的tRF-RNA標靶對,利於生物學家做更進一步的實驗證實。
tRFBase資料庫網址:
http://cosbi6.ee.ncku.edu.tw/tRFBase/
關鍵字:線蟲、tRF、基因沉默、標靶位置預測
tRNA is a kind of small ncRNA, tRFs are non-randomly generated fragments of tRNA, after tRFs were found by Next Generation Sequencing Technology, many biologists began researching it. But tRF’s characteristic and function are not being confirmed, and it doesn’t have nomenclature, biologists conjectured that tRF will trigger RNAi pathway, and to silence gene. However, the regulatory mechanisms of tRF and endogenous genes are not clear now, if biologist went to find out those tRF-RNA target pairs, only can use trial and error method, it expend a lot of time, manpower and money. So, if we can make prediction by biological rules first, then find most likely pairs to do the experiment, this way can reduce the cost of experiment and find target pairs easily.
This study is based on the research results of worm piRNA-mRNA target pairs in our laboratory, and refer to the current research results on tRF. We assume tRF will bind with specific protein and regulate other RNA. Use the CLIP-Seq and CLASH data provided by cooperator and experiment data. We design a pipeline to find tRF bind with PRG-1. Further, we develop a prediction tool to find all tRF-RNA target pairs on all RNA sequences. Finally, we build a database about tRF-RNA interaction. We provide two search mode for user, search result include tRF-RNA target pairs information, and visualize the target position for user. At the end of this study, we explore whether there is a similar property between which tRF can bind with PRG-1 and piRNA, then pick some high reliability target pairs, which will help biologists to do further experimental confirmation.
tRFBase is available at : http://cosbi6.ee.ncku.edu.tw/tRFBase/
Key words: C. elegans, tRF, targeting-site prediction, silent mutations
[1]蟲蟲危機─以線蟲做為模式生物
https://ejournal.stpi.narl.org.tw/index/volueItem/detail?id=CFA00E33-DFBB-401A-9913-96BA34F71F8B
[2]秀麗隱桿線蟲 https://zh.wikipedia.org/wiki/%E7%A7%80%E9%BA%97%E9%9A%B1%E6%A1%BF%E7%B7%9A%E8%9F%B2
[3]WS227 Release Letter. WormBase. 10 August 2011 [2013-11-19].
[4]C. elegans Sequencing Consortium. Genome sequence of the nematode C. elegans: a platform for investigating biology. Science. 1998, 282: 2012–2018 [2016-12-09]. PMID 9851916. doi:10.1126/science.282.5396.2012.
[5] Haussecker, D.; Huang, Y.; Lau, A.; Parameswaran, P.; Fire, A.Z.; Kay, M.A. Human tRNA-derived small RNAs in the global regulation of RNA silencing. RNA 2010, 16, 673–695.
[6] Loss-Morais, G.; Waterhouse, P.M.; Margis, R. Description of plant tRNA-derived RNA fragments (tRFs) associated with argonaute and identification of their putative targets. Biol. Direct 2013, 8, 6.
[7] Wei-Lin Xu, Ye Yang, Yi-Dan Wang, Liang-Hu Qu and Ling-Ling Zheng ,”Computational Approaches to tRNA-Derived Small RNAs”, Non-coding RNA 2017, 3, 2.
[8] Fire A1, Xu S, Montgomery MK, Kostas SA, Driver SE, Mello CC,” Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans”, Nature. 1998 Feb 19;391(6669):806-11.
[9] Abbott J.A., Francklyn C.S., Robey-Bond S.M. Molecular Biology of the Transfer RNA Revisited. Frontiers E-books; Lausanne, Switzerland: 2014. Transfer RNA and human disease; p. 142.
[10] Hopper AK, tRNA transfers to the limelight, Phizicky EMGenes Dev. 2003 Jan 15; 17(2):162-80.
[11] Sobala A, Hutvagner G, Transfer RNA-derived fragments: origins, processing, and functions. Wiley Interdiscip Rev RNA. 2011 Nov-Dec; 2(6):853-62.
[12] Megumi Shigematsu and Yohei Kirino, tRNA-Derived Short Non-coding RNA as Interacting Partners of Argonaute Proteins, Gene Regulation and Systems Biology 2015:9
[13] Yong Sun Lee, Yoshiyuki Shibata, Ankit Malhotra, and Anindya Dutta, A novel class of small RNAs:tRNA-derived RNA fragments (tRFs), GENES & DEVELOPMENT 23:2639–2649
[14] Pankaj Kumar,Canan Kuscu, and Anindya Dutta, Biogenesis and Function of Transfer RNA-Related Fragments (tRFs), Trends in Biochemical Sciences, August 2016, Vol. 41, No. 8
[15] Vera Oberbauer and Matthias R. Schaefer,” tRNA-Derived Small RNAs: Biogenesis, Modification,Function and Potential Impact on Human Disease Development”, Genes 2018, 9, 607; doi:10.3390/genes9120607.
[16] Eun Joo Park and Tae-Houn Kim,’’ Fine-Tuning of Gene Expression by tRNA-Derived Fragments during Abiotic Stress Signal Transduction’’, Int. J. Mol. Sci. 2018, 19, 518.
[17] FANG Zhi-Peng, ZHOU Xiao-Long, WANG En-Duo,’’ tRNA-derived fragments: the new regulators of gene expression’’, Chinese Bulletin of Life Sciences, Vol. 26, No. 7,Jul., 2014
[18] Kozomara A, Griffiths-Jones S. miRBase: annotating high confidence microRNAs using deep sequencing data. Nucleic Acids Res, 2014, 42(Database issue): D68-73
[19] Maute RL, Schneider C, Sumazin P, et al. tRNA-derived microRNA modulates proliferation and the DNA damage response and is down-regulated in B cell lymphoma. Proc Natl Acad Sci USA, 2013, 110(4): 1404-9
[20] Alves, C.S.; Vicentini, R.; Duarte, G.T.; Pinoti, V.F.; Vincentz, M.; Nogueira, F.T. Genome-wide identification and characterization of tRNA-derived RNA fragments in land plants. Plant Mol. Biol. 2017, 93, 35–48. [CrossRef] [PubMed]
[21] Hsieh, L.C.; Lin, S.I.; Shih, A.C.; Chen, J.W.; Lin, W.Y.; Tseng, C.Y.; Li, W.H.; Chiou, T.J. Uncovering small RNA-mediated responses to phosphate deficiency in Arabidopsis by deep sequencing. Plant Physiol. 2009,151, 2120–2132. [CrossRef] [PubMed]
[22] Megumi Shigematsu, Shozo Honda, and Yohei Kirino, Transfer RNA as a source of small functional RNA, J Mol Biol Mol Imaging. 2014 ; 1(2):
[23] Takamasa Hirano, Yuka W. Iwasaki, Zachary Yu-Ching Lin, et al,Small RNA profiling and characterization of piRNA clusters in the adult testes of the common marmoset, a model primate, RNA 2014 20: 1223-1237.
[24] Zhang, X. et al. (2016) IL-4 inhibits the biogenesis of an epigenetically suppressive PIWI-interacting RNA to upregulate CD1a molecules on monocytes/dendritic cells. J. Immunol. 196, 1591–1603
[25] 周德健,叶克穷, 利用CLIP技术研究蛋白质和RNA的相互作用, Vol. 26, No. 3 Mar., 2014, Chinese Bulletin of Life Sciences
[26] Helwak A, Kudla G, Dudnakova T, et al. Mapping the human miRNA interactome by CLASH reveals frequent noncanonical binding. Cell, 2013, 153(3): 654-65
[27] Anthony J. Travis, Jonathan Moody, Aleksandra Helwak, David Tollervey, Grzegorz Kudla, Hyb: A bioinformatics pipeline for the analysis of CLASH (crosslinking,ligation and sequencing of hybrids) data, Methods 65 (2014) 263–273
[28] Wu WS, Huang WC, Brown JS, Zhang D, Song X, Chen H, Tu S, Weng Z, Lee HC., pirScan: a webserver to predict piRNA targeting sites and to avoid transgene silencing in C. elegans., Nucleic Acids Res. 2018 Jul 2;46(W1):W43-W48.
[29] Wu WS, Brown JS, Chen TT, Chu YH, Huang WC, Tu S, Lee HC., piRTarBase: a database of piRNA targeting sites and their roles in gene regulation., Nucleic Acids Res. 2019 Jan 8;47(D1):D181-D187.
[30] "wormbase," 2000. [Online]. Available: https://www.wormbase.org/.
[31] Pankaj Kumar Anthony J. Travis, Jonathan Moody, Aleksandra Helwak, David Tollervey, Grzegorz Kudla, Hyb: A bioinformatics pipeline for the analysis of CLASH (crosslinking,ligation and sequencing of hybrids) data, Methods 65 (2014) 263–273
[32] Telonis, A.G.; Loher, P.; Honda, S.; Jing, Y.; Palazzo, J.; Kirino, Y.; Rigoutsos, I. Dissecting tRNA-derived fragment complexities using personalized transcriptomes reveals novel fragment classes and unexpected dependencies. Oncotarget 2015, 6, 24797–24822
[33] Selitsky, S.R.; Sethupathy, P. tDRmapper: Challenges and solutions to mapping, naming, and quantifying tRNA-derived RNAs from human small RNA-sequencing data. BMC Bioinform. 2015, 16, 354
[34] Phillipe Loher, Aristeidis G. Telonis & Isidore Rigoutsos,’’ MINTmap: fast and exhaustive profiling of nuclear and mitochondrial tRNA fragments from short RNA-seq data’’, Scientific Reports |7:41184 | DOI: 10.1038/srep41184
[35] Pliatsika, V., Loher, P., Telonis, A. G. & Rigoutsos, I. MINTbase: a framework for the interactive exploration of mitochondrial and nuclear tRNA fragments. Bioinformatics 32, 2481–2489 (2016).
[36] Lorenz, Ronny and Bernhart, Stephan H. and Höner zu Siederdissen, Christian and Tafer, Hakim and Flamm, Christoph and Stadler, Peter F. and Hofacker, Ivo L. ViennaRNA Package 2.0 Algorithms for Molecular Biology, 6:1 26, 2011, doi:10.1186/1748-7188-6-26
[37] U. Mueckstein, H. Tafer, J. Hackermueller, S.H. Bernhart, P.F. Stadler, and I.L. Hofacker (2006), "Thermodynamics of RNA-RNA Binding", Bioinformatics: 22(10), pp 1177-1182
[38] Donglei Zhang , Shikui Tu, Michael Stubna,Wei-Sheng Wu,Wei-Che Huang,Zhiping Weng,and Heng-Chi Lee, The piRNA targeting rules and the resistance to piRNA silencing in endogenous genes, Science. 2018 Feb 2; 359(6375): 587–592.