簡易檢索 / 詳目顯示

研究生: 施孟甫
Shih, Meng-Fu
論文名稱: 新型氧化物透明導電膜及其在太陽能電池之應用
Novel Metal Oxide-Based Transparent Conductive Films and Their Applications on Solar Cells
指導教授: 朱聖緣
Chu, Sheng-Yuan
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 99
中文關鍵詞: 透明導電薄膜氧化物氧化鋅二氧化鈦太陽能電池
外文關鍵詞: TCO, ZnO, TiO2, solar cell
相關次數: 點閱:58下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在太陽能電池的應用上,透明導電基板的研發為重要的課題。雖然銦錫氧化物(ITO)材料做為透明導電薄膜氧化物(TCO)最為普遍,但是ITO 的價格較為昂貴,並且本身具有毒性,會造成人體與環境的傷害。因此,雖然ITO 透明導電薄膜具有低溫成膜、極低的電阻、不錯的透光率和極平坦的表面等特性。但是,由於其成本高與具毒性等無法忽視的潛在問題,因而使許多研究團體,持續投入研究低成本、無毒性且光電特性足以和ITO 媲美的新型ZnO 與TiO2 透明導電膜的開發與研究。
    然而TCO的製程技術與光伏應用尚未被完全了解,在本研究中,我們主要針對新型TCO的研發以及利用其於太陽能電池之上,並將實驗內容分成三個部分:
    (1) 利用氧化鋅系列的透明鍍膜來完成太空用砷化鎵太陽能電池抗輻射。氧化鋅 除了高透光性,還可經由參雜提高電導特性,增加光生載子的收集效率,另外藉由氧化鋅有高的折射率,應用於砷化鎵太陽能電池上,有很好的抗反射 作用,提升太陽能電池效率。
    (2) 低電阻率、高透光率的新型透明導電基板的透明導電氧化物薄膜的製備及其物理化學特性與濺鍍參數的相互影響關係有待深入研究。本實驗中,我們將以射頻磁控濺鍍法,在玻璃基板上,鍍製TNO(TiO2-Nb2O5)透明導電氧化物薄膜;鈮摻雜量、薄膜厚度、成長壓力、濺鍍功率、基板溫度、退火溫度等變數對濺鍍薄膜的結晶相、電阻率、載子濃度和移動率、可見光穿透率、表面平整性等薄膜光電特性的影響。
    (3) 發展一種新型的染料敏化電池光電極結構用於增加太陽能電池光子的吸收能力,並實作與理論探討,太陽能電池力求轉換效率得以提升。
    希望TCO的製程技術的確認與光伏應用探索將將會對太陽能學術研究以及太陽能光電產業提供貢獻。

    Transparent conducting substrate is an important research and development topic in applications of solar cell devices. Although ITO (indium tin oxide) is probably the most successful transparent conductive oxide (TCO) thin film, however, indium is a relatively scarce element in the earth. Thus, the cost for ITO production is more expensive than that of others. Besides, the toxic nature of indium could be hazardous to human and environment. For the purpose of overcoming these ITO basically drawbacks, new type ZnO-based and TiO2-based TCOs have been actively studied as an alternative to ITO films by many research groups in recent years. In contrast to ITO materials, the ZnO and TiO2 materials are non-toxic, abundant, low cost, and more stable in reduction ambient. Therefore, both ZnO-based and TiO2-based thin films have attracted much attention as the transparent electrode.

    However, the preparation techniques and photovoltage applications of new transparent conducting oxide films are not well understood. In this research, the experiments contain three parts and focus on developing novel transparent conducting thin films to increase the efficiency of the solar cells. There research directions are included:

    (1) We used ZnO related material to reduce the radiation damage of the GaAs based solar cells for satellite. In addition to the anti-radiation, the doped ZnO behaves excellent properties of transparency and conductivity. Both are good characteristics for collecting generated carriers.

    (2) We studed the RF magnetron sputter deposition of new transparent conducting TiO2 films on glass substrates. The influences of growth pressure, sputtering power, target materials, substrate temperature, and annealing temperature on the electro-optical properties will be extensively investigated.

    (3) We developed novel photo electrode of dye sensitized solar cell to improve the absorption ability to sun light of device.
    Clarification of the optimum process parameters, and physical properties of these new transparent conducting substrates and photovoltage applications are helpful for the development and practical applications of solar cells.

    中文摘要 I 英文摘要 III 目錄 V 表目錄 IX 圖目錄 X 第一章 緒論 1 1-1 前言 1 1-2 研究動機 2 1-3 論文架構 3 第二章 理論與文獻回顧 4 2-1 透明導電膜 4 2-2 透明導電膜之製備 6 2-3 氧化鋅薄膜的結構和特性 6 2-3-1 氧化鋅之晶體結構 6 2-3-2 鋁摻雜氧化鋅薄膜之電學特性 7 2-3-3 鋁摻雜氧化鋅薄膜之光學性質 7 2-4 二氧化鈦薄膜的結構和特性 8 2-4-1 二氧化鈦之晶體結構 8 2-4-2 鈮摻雜銳鈦礦二氧化鈦薄膜之電學性質 8 2-4-3 鈮摻雜銳鈦礦二氧化鈦薄膜之光學性質 10 2-5 染料敏化太陽能電池 (Dye-Sensitized Solar Cell) 10 2-5-1 染料敏化太陽能電池發展背景與演進 10 2-5-2 染料敏化太陽能電池工作原理 11 2-6 GaAs基系太陽能電池 12 2-6-1 單結 GaAs 基系太陽能電池 13 2-6-2 多結疊層 GaAs 基系太陽能電池 14 2-7 濺鍍原理 14 2-7-1 電漿原理 14 2-7-2 射頻濺鍍系統 15 第三章 實驗過程及研究方法 21 3-1 實驗材料 21 3-1-1 基板材料 21 3-1-2 靶材材料 21 3-1-3 藥品及實驗氣體 21 3-2 基板的選擇及清洗 22 3-3 樣品的準備及實驗過程 22 3-3-1 真空濺鍍之實驗步驟 22 3-3-2 太陽能電池之實驗步驟 23 3-3-2-1 製作奈米多孔薄膜 23 3-3-2-3 吸附染料於奈米多孔薄膜表面 23 3-3-2-4 製作白金電極 23 3-3-2-5 調配電解質溶液 24 3-3-2-6 太陽能電池組裝 24 3-5 薄膜結構的品質分析 24 3-5-1 X光粉末繞射儀(X-ray powder diffract meter) 24 3-5-1-1 基本工作原理 25 3-5-1-2 儀器規格與特徵 26 3-5-1-3 應用 26 3-5-2 掃描式電子顯微鏡(SEM,Scanning Electron Microscope) 27 3-5-3 原子力顯微鏡(AFM) 28 3-5-3-1 基本工作原理 28 3-5-4 紫外光-可見光 光譜儀 ( UV-Visible spectrophotometer ) 28 3-5-4-1 工作原理 28 3-5-4-2 儀器規格與特徵 28 3-5-4-3 應用 29 3-5-5 電性分析儀器 30 3-5-6 太陽能電池元件量測 31 第四章 實驗結果與討論 40 4-1 氧化鋅薄膜應用於太空用砷化鎵太陽能電池 41 4-1-1 氧化鋅薄膜厚度對反射率之影響 42 4-1-1-1 前言 42 4-1-1-2 反射率分析 42 4-1-2 濺鍍法成長氧化鋅薄膜於砷化鎵太陽能電池之影響 44 4-1-2-1 前言 44 4-1-2-2 太陽能電池光電特性分析 44 4-1-3 濺鍍法成長氧化鋅薄膜於光阻保護砷化鎵太陽能電池之影響 46 4-1-3-1 前言 46 4-1-3-2 太陽能電池光電特性分析 46 4-1-4 溶膠-凝膠法成長氧化鋅薄膜於砷化鎵太陽能電池之影響 48 4-1-4-1 前言 48 4-1-4-2太陽能電池光電特性分析 48 4-1-5 氧化鋅薄膜成長於砷化鎵太陽能電池抗輻射之研究 50 4-1-5-1 前言 50 4-1-5-2 太陽能電池光電特性分析 51 4-1-6 氧化鋅薄膜成長於砷化鎵太陽能電池之總結 56 4-2 鈮摻雜二氧化鈦薄膜成長 57 4-2-1 鈮摻雜量之影響 58 4-2-1-1 前言 58 4-2-1-2 電性分析 58 4-2-1-3 光性分析 59 4-2-2 薄膜厚度之影響 62 4-2-2-1 前言 62 4-2-2-2 電性分析 63 4-2-2-3 光性分析 64 4-2-3 成長壓力之影響 67 4-2-3-1 前言 67 4-2-3-2 電性分析 67 4-2-3-3 光性分析 68 4-2-4 射頻功率之影響 71 4-2-4-1 前言 71 4-2-4-2 電性分析 71 4-2-4-3 光性分析 72 4-2-5 基板溫度之影響 75 4-2-5-1 前言 75 4-2-5-2 電性分析 75 4-2-5-3 光性分析 76 4-2-6 退火溫度之影響 79 4-2-6-1 前言 79 4-2-6-2 電性分析 79 4-2-6-3 光性分析 80 4-2-7 鈮摻雜二氧化鈦薄膜總結 83 4-3 透明導電薄膜應用染料敏化太陽能電池(DSSC) 84 4-3-1 前言 84 4-3-2 染料敏化太陽能電池光電特性量測 85 4-3-3 新型透明導電膜應用於染料敏化太陽能電池總結 86 第五章 結論與未來展望 92 5-1 抗輻射及抗反射氧化鋅薄膜成長於砷化鎵太陽能電池 92 5-2 射頻磁控濺鍍法成長鈮摻雜二氧化鈦薄膜 92 5-3 新型透明導電薄膜應用於染料敏太陽能電池 93 5-4 未來研究建議 93 參考文獻 94

    1. Y. Ohmori, M. Uchida, K. Muro and K. Yoshino, Jpn. J. Appl. Phys 30 (11B) (1991).
    2. 李玉華, 科儀新知, 第十二卷第一期, 94 (1990).
    3. 明輝, 工業材料, 179 期, 134 (2001).
    4. A. Al-Ajili and S. Bayliss, Thin Solid Films 305 (1-2), 116-123 (1997).
    5. D. C. Paine, T. Whitson, D. Janiac, R. Beresford, C. O. Yang and B. Lewis, Journal of Applied Physics 85 (12), 8445-8450 (1999).
    6. 史月艷, 潘文輝, 殷志強, 真空科學技術, 第十四卷第一期, 35 (1994).
    7. J. Ma, D. Zhang, J. Zhao, C. Tan, T. Yang and H. Ma, Applied Surface Science 151 (3-4), 239-243 (1999).
    8. C. Terrier, J. Chatelon, J. Roger, R. Berjoan and C. Dubois, Journal of Sol-Gel Science and Technology 10 (1), 75-81 (1997).
    9. K. H. Kim, S. W. Lee, D. W. Shin and C. G. Park, Journal of the American Ceramic Society 77 (4), 915-921 (1994).
    10. A. E. Rakhshani, Y. Makdisi and H. A. Ramazaniyan, Journal of Applied Phsics 83 (2), 1049-1057 (1998).
    11. B. Mayer, Thin Solid Films 221 (1-2), 166-182 (1992).
    12. T. Ma and S. Lee, Journal of Materials Science: Materials in Electronics 11 (4), 305-309 (2000).
    13. J. Hu and R. G. Gordon, Journal of Applied Physics 71 (2), 880-890 (1992).
    14. T. Miyata, Y. Minamino, S. Ida and T. Minami, Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films 22, 1711 (2004).
    15. T. Furusaki, J. Takahashi and K. Kodaira, Journal of the Ceramic Society of Japan 102 (2), 200-205 (1994).
    16. 許國銓, 材料與社會, 84期, 110 (1993).
    17. 周宏邦, 王順輝, 楊天賜, 許景盛, 翁明壽, 2004材料年會論文集, 編號P-170 (2004).
    18. H. Hartnagel, Semiconducting transparent thin films. (Taylor & Francis, 1995).
    19. T.Minami, H.Sato, K.Ohashi, T.Tomofuji, S.Takata, J. Cry. Grow., 117, 370 (1992).
    20. K.Wasa, Handbook of Sputter Deposition Technology, 98 (1992).
    21. B.Chapman, John Wiley & Sons.Inc.92 N.Y. , chap.6 (1980).
    22. Hyungduk Ko, Weon-Pei Tai, Young-Sung Kim, J. Cry. Grow., 277, 352 (2005).
    23. C. Agashe, O. Kluth, J. Hupkes, U. Zastrow, B. Rech and M. Wuttig, Journal of Applied Physics 95 (4), 1911-1917 (2004).
    24. E. Fu, D. Zhuang and G. Zhang, Microelectronics Journal 35 (4), 383-387 (2004).
    25. T.Minami, H.Sato, H.Imamoto, S.Takata, Jpn. J. Appl. Phys., 31, 253 (1992).
    26. A. Linsebigler, G. Lu and J. Yates, Chemical Reviews 95 (3), 735-758 (1995).
    27. S. X. Zhang, D. C. Kundaliya, W. Yu, S. Dhar, S. Y. Young, L. G. Salamanca-Riba, S. B. Ogale, R. D. Vispute and T. Venkatesan, Journal of Applied Physics 102 (1), 013701-013704 (2007).
    28. Y. Matsumoto, M. Murakami, T. Shono, T. Hasegawa, T. Fukumura, M. Kawasaki, P. Ahmet, T. Chikyow, S. Koshihara and H. Koinuma, Science 291 (5505), 854 (2001).
    29. Y. Furubayashi, T. Hitosugi, Y. Yamamoto, K. Inaba, G. Kinoda, Y. Hirose, T. Shimada and T. Hasegawa, Applied Physics Letters 86 (25), 252101-252103 (2005).
    30. S. X. Zhang, S. Dhar, W. Yu, H. Xu, S. B. Ogale and T. Venkatesan, Applied Physics Letters 91 (11), 112113-112113 (2007).
    31. Y. Furubayashi, T. Hitosugi, Y. Yamamoto, Y. Hirose, G. Kinoda, K. Inaba, T. Shimada and T. Hasegawa, Thin Solid Films 496 (1), 157-159 (2006).
    32. T. Hitosugi, A. Ueda, S. Nakao, N. Yamada, Y. Furubayashi, Y. Hirose, T. Shimada and T. Hasegawa, Applied Physics Letters 90 (21), 212106-212103 (2007).
    33. N. Yamada, T. Hitosugi, N. L. H. Hoang, Y. Furubayashi, Y. Hirose, T. Shimada and T. Hasegawa, Japanese Journal of Applied Physics 46 (8A), 5275-5277 (2007).
    34. F. Hurd and R. Livingston, The Journal of Physical Chemistry 44 (7), 865-873 (1940).
    35. S. Chaberek, A. Shepp and R. Allen, The Journal of Physical Chemistry 69 (2), 641-647 (1965).
    36. S. Chaberek and R. Allen, The Journal of Physical Chemistry 69 (2), 647-656 (1965).
    37. S. Chaberek, R. Allen and G. Goldberg, The Journal of Physical Chemistry 69 (9), 2834-2841 (1965).
    38. D. R. Kearns, R. A. Hollins, A. U. Khan and P. Radlick, Journal of the American Chemical Society 89 (21), 5456-5457 (1967).
    39. H. Tsubomura, M. Matsumura, Y. Nomura and T. Amamiya, Nature 261 (5559), 402-403 (1976).
    40. B. O'Regan and M. Gratzel, Nature 353 (6346), 737-740 (1991).
    41. A. Kay and M. Graetzel, The Journal of Physical Chemistry 97 (23), 6272-6277 (1993).
    42. P. Wang, S. M. Zakeeruddin, J. E. Moser, M. K. Nazeeruddin, T. Sekiguchi and M. Gratzel, Nat Mater 2 (6), 402-407 (2003).
    43. M. Gratzel, Nature 414 (6861), 338-344 (2001).
    44. H. Rensmo, K. Keis, H. Lindstrom, S. Sodergren, A. Solbrand, A. Hagfeldt, S. E. Lindquist, L. N. Wang and M. Muhammed, The Journal of Physical Chemistry B 101 (14), 2598-2601 (1997).
    45. K. Tennakone, G. Kumara, I. Kottegoda and V. Perera, Chemical Communications 1999 (1), 15-16 (1999).
    46. K. Keis, E. Magnusson, H. Lindstrom, S. Lindquist and A. Hagfeldt, Solar Energy Materials and Solar Cells 73 (1), 51-58 (2002).
    47. M. Gratzel, Nature 421 (6923), 586-587 (2003).
    48. D. Cahen, G. Hodes, M. Gratzel, J. F. Guillemoles and I. Riess, The Journal of Physical Chemistry B 104 (9), 2053-2059 (2000).
    49. A. Zaban, S. Ferrere and B. A. Gregg, The Journal of Physical Chemistry B 102 (2), 452-460 (1998).
    50. A. Zaban, A. Meier and B. A. Gregg, The Journal of Physical Chemistry B 101 (40), 7985-7990 (1997).
    51. 莊嘉琛, 太陽能工程-太陽電池發電系統 (全華科技圖書公司, 1997).
    52. 雷永泉, 新能源材料 (新文京開發, 2004).
    53. http://www.eere.energy.gov/solar/
    54. F. Van de Pol, American Ceramic Society Bulletin 69 (12), 1959-1965 (1990).
    55. J. Ye, S. Gu, S. Zhu, T. Chen, W. Liu, F. Qin, L. Hu, R. Zhang, Y. Shi and Y. Zheng, Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films 21 (4), 979-982 (2003).
    56. Y. Natsume and H. Sakata, Thin Solid Films 372 (1-2), 30-36 (2000).
    57. 施敏, 半導體元件物理與製作技術 (國立交通大學出版社, 1993).
    58. W. Rong, L. Yunhong and S. Xufang, Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 266 (5), 745-749 (2008).
    59. D. C. Look, J. W. Hemsky and J. R. Sizelove, Physical Review Letters 82 (12), 2552 (1999).
    60. F. Agullo-Lopez, C. Catlow and P. Townsend, Point defects in materials. (Academic Press, 1988).
    61. D. Pons and J. Bourgoin, Journal of Physics C: Solid State Physics 18, 3839-3871 (1985).
    62. D. C. Look, D. C. Reynolds, J. W. Hemsky, J. R. Sizelove, R. L. Jones and R. J. Molnar, Physical Review Letters 79 (12), 2273 (1997).
    63. J. J. Loferski and P. Rappaport, Physical Review 111 (2), 432 (1958).
    64. D. Locker and J. Meese, IEEE Transactions on Nuclear Science 19 (6), 237-242 (1972).
    65. M. Sacerdoti, M. C. Dalconi, M. C. Carotta, B. Cavicchi, M. Ferroni, S. Colonna, M. L. D. Vona, J. Solid State Chem. 177, 1781 (2004).
    66. H. Tanaka, K. Ihara, T. Miyata, H. Sato and T. Minami, Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films 22 (4), 1757-1762 (2004).
    67. B.-Z. Dong, G.-J. Fang, J.-F. Wang, W.-J. Guan and X.-Z. Zhao, Journal of Applied Physics 101 (3), 033713-033717 (2007).
    68. S. T. Tan, B. J. Chen, X. W. Sun, W. J. Fan, H. S. Kwok, X. H. Zhang and S. J. Chua, Journal of Applied Physics 98 (1), 013505-013505 (2005).
    69. J. G. Lu, Z. Z. Ye, L. Wang, J. Y. Huang, and B. H. Zhao, Mater. Sci. Semicond. Process. 5, 491 (2003).
    70. Per Widenborg, Winston Chin, and Armin G.Aberle, Solar Energy Materials & Solar Cell, 73, 1-20 (2002).
    71. R. Ondo-Ndong, G. Ferblantier, M. Kalfioui, A. Boyer, A. Foucaran, J. Cryst. Growth, 255, 130 (2003).
    72. I.T. Tang, Y.C. Wang, W.C. Hwang, C.C. Hwang, N.C. Wu, M.P. Houng, Y.H. Wang, J. Cryst. Growth, 252, 190 (2003).
    73. T. Hitosugi, A. Ueda, Y. Furubayashi, Y. Hirose, S. Konuma, T. Shimada and T. Hasegawa, JAPANESE JOURNAL OF APPLIED PHYSICS PART 2 LETTERS 46 (1/3), 86 (2007).
    74. Y. Leprince-Wang, K. Yu-Zhang, V. Nguyen Van, D. Souche and J. Rivory, Thin Solid Films 307 (1-2), 38-42 (1997).
    75. N. Martin, C. Rousselot, D. Rondot, F. Palmino and R. Mercier, Thin Solid Films 300 (1-2), 113-121 (1997).
    76. H. J. Snaith and M. Grätzel, advanced materials 18, 1910 (2006).
    77. S. Major, S. Kumar, M. Bhatnagar and K. L. Chopra, Applied Physics Letters 49 (7), 394-396 (1986).
    78. S. Lee, J. H. Noh, H. S. Han, D. K. Yim, D. H. Kim, J.-K. Lee, J. Y. Kim, H. S. Jung and K. S. Hong, The Journal of Physical Chemistry C 113 (16), 6878-6882 (2009).

    下載圖示 校內:2020-12-31公開
    校外:2020-12-31公開
    QR CODE