| 研究生: |
陳柏穎 Chen, Po-Ying |
|---|---|
| 論文名稱: |
一個相容於標準CMOS製程並具有動態隨機存取記憶體核心的
嵌入式靜態隨機存取記憶體 An Embedded SRAM with DRAM Core in Standard CMOS Process |
| 指導教授: |
張順志
Chang, Soon-Jyh |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2010 |
| 畢業學年度: | 98 |
| 語文別: | 英文 |
| 論文頁數: | 72 |
| 中文關鍵詞: | 嵌入式 、記憶體 |
| 外文關鍵詞: | embedded, memory |
| 相關次數: | 點閱:73 下載:6 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在本篇論文中,我們提出一個兼具動態隨機存取記憶體與靜態隨機存取記憶體優點並操作於200 MHz的嵌入式動態隨機存取記憶體。此設計除了可以減少面積成本外更可以降低製造成本。此外,將週期性更新操作隱藏執行,使其具有靜態隨機存取記憶體的介面,更提高了此記憶體在系統單晶片上的相容性。
論文中描述使用中芯0.16微米標準製程所研製一個動態隨機存取記憶體中的記憶體區塊。由晶片量測結果顯示資料維持時間接近5.5毫秒,每一個記憶體區塊的消耗功率約為3毫瓦。而完整的嵌入式動態隨機存取記憶體使用台積0.16微米標準製程實現,新的記憶體單元及核心的面積分別為傳統6T-SRAM的百分之三十六以及百分之七十三。
This thesis proposes a 200-MHz embedded dynamic random access memory (DRAM) that combines both the advantages of DRAM and static random access memory (SRAM). This design not only reduces the area cost but also saves the manufacturing cost. In additional, the design hides the periodically refresh operation in background and provides SRAM interface that make it easier to be embedded in a system-on-a-chip (SoC) design.
A DRAM bank has been fabricated in SMIC standard 0.16-m 1P5M CMOS process. Measurement results show the retention time is nearly 5.5 ms and the power consumption is about 3 mW. The complete embedded DRAM has been fabricated in TSMC standard 0.16-m 1P5M CMOS process. The novel memory cell area and the whole core area are only 36 % and 73 % of a conventional 6T-SRAM, respectively.
[1] W. Leung, F. C. Hsu, M. E. Jones, “The ideal SOC memory: 1T-SRAMTM,” in Proc. IEEE Int. ASIC/SOC Conf., 2000, pp. 32-36.
[2] A. Shubat, Perspectives: Moving the market to embedded memory. IEEE Design & Test of Computers, 18(3):5–6, May-June 2001.
[3] Y. Taito, T. Tanizaki, M. Kinoshita, F. Igaue, T. Fujino, and K. Arimoto, “An embedded DRAM with a 143-MHz SRAM interface using sense-synchronized read/write,” IEEE J. Solid-State Circuits, vol. 38, no. 11, pp. 1967-1973, November 2003.
[4] N. Kuroda, N. Yamada, T. Nakamura, Y. Sumimoto, M. Hirose, K. Ohta, Y. Agata, Y. Yamasaki, and H. Akamatsu, “A 1.8-ns random-cycle SRAM-interface high-speed (SH-RAM) compiler with data replica architecture,” in Proc. IEEE Asian Solid-State Circuits Conf., November 2008, pp. 233-236.
[5] A. S. Sedra, K. C. Smith, Microelectronic circuits, 5th Edition. Oxford University Press, 2004.
[6] K. Itoh, VLSI Memory chip design. Springer Series in Advanced Microelectronics, 2001.
[7] B. Keeth, R. Baker, B. Johnson, and F. Lin, DRAM circuit design: Fundamental and high-speed topics. New York: Wiley, 2007
[8] N. Weste, and D. Harris, CMOS VLSI design: A circuits and systems perspective, 3rd edition. New York: Addison Wesley, 2005
[9] M. Shirahama, Y. Agata, T. Kawasaki, R. Nishihara, W. Abe., N. Kuroda, H. Sadakata, T. Uchikoba, K. Takahashi, K. Egashira, S. Honda, M. Miura, S. Hashimoto, H. Kikukawa, and H. Yamauchi, “A 400-MHz random-cycle dual-port interleaved DRAM (D2RAM) with standard CMOS process,” IEEE J. Solid-State Circuits, vol. 40, no. 5, pp. 1200-1207, May 2005.
[10] M. Iida, N. Kuroda, H. Otsuka, M. Hirose, Y. Yamasaki, K. Ohta, K. Shimakawa, T. Nakabayashi, H. Yamauchi, T. Sano, T. Gyohten, M. Maruta, A. Yamazaki, F. Morishita, K. Dosaka, M. Takeuchi, and K. Arimoto, “A 322-MHz random-cycle embedded DRAM with high-accuracy sensing and tuning,” IEEE J. Solid-State Circuits, vol. 40, no. 11, pp. 2296-2302, November 2005.
[11] B. H. Calhoun and A. Chandrakasan, “A 256-kb 65-nm Sub-threshold SRAM Design for Ultra-Low-Voltage Operation,” IEEE J. Solid-State Circuits, vol. 42, no. 3, pp. 680-688, March 2007.
[12] T. Sekiguchi, K. Itoh, T. Takahashi, M. Sugaya, H. Fujisawa, K. Kajigaya, and K. Kimura, “A low-impedance open-bitline array for multigigabit DRAM,” IEEE J. Solid-State Circuits, vol. 37, no. 4, pp. 487-498, April 2002.
[13] J. T. Lin, and C. T. Hsu, “An initial overdriven sense amplifier for low voltage DRAMs,” in Proc. Third IEEE International Caracas Conf. on Devices, Circuits and Systems, March 2000, pp. c31/1-c31/4.
[14] S. Akiyama, T. Sekiguchi, R. Takemura, A. Kotabe, and K. Itoh, “Low-Vt small-offset gated preamplifier for sub-1V gigabit DRAM arrays,” in Proc. IEEE International Solid-State Circuits Conf., 2009. pp. 142-143, 143a.
[15] S. Hong, S. Kim, J. K. Wee, and S. Lee, “Low-voltage DRAM sensing scheme with offset-cancellation sense amplifier,” IEEE J. Solid-State Circuits, vol. 37, no. 10, pp. 1356-1360, October 2002.
[16] M. J. Lee, K. M. Kyung, H. S. Won, M. S. Lee, K. W. Park, “A bitline sense amplifier for offset compensation,” in Proc. IEEE International Solid-State Circuits Conf., 2010. pp. 438-439, 439a.
[17] S. Kajiyama, M. Fujito, H. Kasai, M. Mizuno, T. Yamaguchi, and Y. Shinagawa, “A 300 MHz embedded flash memory with pipeline architecture and offset-free sense amplifiers for dual-core automotive microcontrollers,” in Proc. IEEE Asian Solid-State Circuits Conf., November 2008, pp. 257-260.
[18] S. E. Schuster, and R. E. Matick, “Fast low power eDRAM hierarchical differential sense amplifier,” IEEE J. Solid-State Circuits, vol. 44, no. 2, pp. 631-641, February 2009.
[19] M.-L. Chung, “An Embedded DRAM with SRAM Interface in Standard CMOS Process,” Master Thesis, NCKU, 2009.